This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 65

Durer Math Competition CD 1st Round - geometry, 2014.C2

Above the segments $AB$ and $BC$ we drew a semicircle at each. $F_1$ bisects $AB$ and $F_2$ bisects $BC$. Above the segments $AF_2$ and $F_1C$ we also drew a semicircle at each. Segments $P Q$ and $RS$ touch the corresponding semicircles as shown in the figure. Prove that $P Q \parallel RS$ and $|P Q| = 2 \cdot |RS|$. [img]https://cdn.artofproblemsolving.com/attachments/8/2/570e923b91e9e630e3880a014cc6df4dc33aa2.png[/img]

1998 Slovenia Team Selection Test, 2

A semicircle with center $O$ and diameter $AB$ is given. Point $M$ on the extension of $AB$ is taken so that $AM > BM$. A line through $M$ intersects the semicircle at $C$ and $D$ so that $CM < DM$. The circumcircles of triangles $AOD$ and $OBC$ meet again at point $K$. Prove that $OK$ and $KM$ are perpendicular

2008 Dutch IMO TST, 5

Let $\vartriangle ABC$ be a right triangle with $\angle B = 90^o$ and $|AB| > |BC|$, and let $\Gamma$ be the semicircle with diameter $AB$ that lies on the same side as $C$. Let $P$ be a point on $\Gamma$ such that $|BP| = |BC|$ and let $Q$ be on $AB$ such that $|AP| = |AQ|$. Prove that the midpoint of $CQ$ lies on $\Gamma$.

Novosibirsk Oral Geo Oly VIII, 2019.2

The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$. [img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]

Durer Math Competition CD Finals - geometry, 2021.D3

Given a semicirle with center $O$ an arbitrary inner point of the diameter divides it into two segments. Let there be semicircles above the two segments as visible in the below figure. The line $\ell$ passing through the point $A$ intersects the semicircles in $4$ points: $B, C, D$ and $E$. Show that the segments $BC$ and $DE$ have the same length. [img]https://cdn.artofproblemsolving.com/attachments/1/4/86a369d54fef7e25a51fea6481c0b5e7dd45ff.png[/img]

2016 Regional Olympiad of Mexico Northeast, 4

Let $ABCD$ be a square. Let $P$ be a point on the semicircle of diameter $AB$ outside the square. Let $M$ and $N$ be the intersections of $PD$ and $PC$ with $AB$, respectively. Prove that $MN^2 = AM \cdot BN$.

2017 Estonia Team Selection Test, 10

Let $ABC$ be a triangle with $AB = \frac{AC}{2 }+ BC$. Consider the two semicircles outside the triangle with diameters $AB$ and $BC$. Let $X$ be the orthogonal projection of $A$ onto the common tangent line of those semicircles. Find $\angle CAX$.

2011 Sharygin Geometry Olympiad, 1

Altitudes $AA_1$ and $BB_1$ of triangle ABC meet in point $H$. Line $CH$ meets the semicircle with diameter $AB$, passing through $A_1, B_1$, in point $D$. Segments $AD$ and $BB_1$ meet in point $M$, segments $BD$ and $AA_1$ meet in point $N$. Prove that the circumcircles of triangles $B_1DM$ and $A_1DN$ touch.

1999 Rioplatense Mathematical Olympiad, Level 3, 5

The quadrilateral $ABCD$ is inscribed in a circle of radius $1$, so that $AB$ is a diameter of the circumference and $CD = 1$. A variable point $X$ moves along the semicircle determined by $AB$ that does not contain $C$ or $D$. Determine the position of $X$ for which the sum of the distances from $X$ to lines $BC, CD$ and $DA$ is maximum.

2018 Greece JBMO TST, 2

Let $ABC$ be an acute triangle with $AB<AC<BC, c$ it's circumscribed circle and $D,E$ be the midpoints of $AB,AC$ respectively. With diameters the sides $AB,AC$, we draw semicircles, outer of the triangle, which are intersected by line $D$ at points $M$ and $N$ respectively. Lines $MB$ and $NC$ intersect the circumscribed circle at points $T,S$ respectively. Lines $MB$ and $NC$ intersect at point $H$. Prove that: a) point $H$ lies on the circumcircle of triangle $AMN$ b) lines $AH$ and $TS$ are perpedicular and their intersection, let it be $Z$, is the circimcenter of triangle $AMN$

2014 Gulf Math Olympiad, 3

(i) $ABC$ is a triangle with a right angle at $A$, and $P$ is a point on the hypotenuse $BC$. The line $AP$ produced beyond $P$ meets the line through $B$ which is perpendicular to $BC$ at $U$. Prove that $BU = BA$ if, and only if, $CP = CA$. (ii) $A$ is a point on the semicircle $CB$, and points $X$ and $Y$ are on the line segment $BC$. The line $AX$, produced beyond $X$, meets the line through $B$ which is perpendicular to $BC$ at $U$. Also the line $AY$, produced beyond $Y$, meets the line through $C$ which is perpendicular to $BC$ at $V$. Given that $BY = BA$ and $CX = CA$, determine the angle $\angle VAU$.

2019 Novosibirsk Oral Olympiad in Geometry, 2

The circle is inscribed in a triangle, inscribed in a semicircle. Find the marked angle $a$. [img]https://cdn.artofproblemsolving.com/attachments/8/e/334c8662377155086e9211da3589145f460b52.png[/img]

Novosibirsk Oral Geo Oly IX, 2020.1

Two semicircles touch the side of the rectangle, each other and the segment drawn in it as in the figure. What part of the whole rectangle is filled? [img]https://cdn.artofproblemsolving.com/attachments/3/e/70ca8b80240a282553294a58cb3ed807d016be.png[/img]

2008 Danube Mathematical Competition, 3

On a semicircle centred at $O$ and with radius $1$ choose the respective points $A_1,A_2,...,A_{2n}$ , for $n \in N^*$. The lenght of the projection of the vector $\overrightarrow {u}=\overrightarrow{OA_1} +\overrightarrow{OA_2}+...+\overrightarrow{OA_{2n}}$ on the diameter is an odd integer. Show that the projection of that vector on the diameter is at least $1$.

Estonia Open Senior - geometry, 1996.1.4

A unit square has a circle of radius $r$ with center at it's midpoint. The four quarter circles are centered on the vertices of the square and are tangent to the central circle (see figure). Find the maximum and minimum possible value of the area of the striped figure in the figure and the corresponding values of $r$ such these, the maximum and minimum are achieved. [img]https://2.bp.blogspot.com/-DOT4_B5Mx-8/XnmsTlWYfyI/AAAAAAAALgs/TVYkrhqHYGAeG8eFuqFxGDCTnogVbQFUwCK4BGAYYCw/s400/96%2Bestonia%2Bopen%2Bs1.4.png[/img]

2014 Contests, 3

(i) $ABC$ is a triangle with a right angle at $A$, and $P$ is a point on the hypotenuse $BC$. The line $AP$ produced beyond $P$ meets the line through $B$ which is perpendicular to $BC$ at $U$. Prove that $BU = BA$ if, and only if, $CP = CA$. (ii) $A$ is a point on the semicircle $CB$, and points $X$ and $Y$ are on the line segment $BC$. The line $AX$, produced beyond $X$, meets the line through $B$ which is perpendicular to $BC$ at $U$. Also the line $AY$, produced beyond $Y$, meets the line through $C$ which is perpendicular to $BC$ at $V$. Given that $BY = BA$ and $CX = CA$, determine the angle $\angle VAU$.

1990 Tournament Of Towns, (268) 2

A semicircle $S$ is drawn on $AB$ as diameter. For an arbitrary point $C$ in $S$ ($C\ne A$,$ C \ne B$), squares are attached to sides $AC$ and $BC$ of triangle $ABC$ outside the triangle. Find the locus of the midpoint of the segment joining the centres of the squares as $C$ moves along $S$. (J Tabov, Sofia)

2020-21 KVS IOQM India, 19

A semicircular paper is folded along a chord such that the folded circular arc is tangent to the diameter of the semicircle. The radius of the semicircle is $4$ units and the point of tangency divides the diameter in the ratio $7 :1$. If the length of the crease (the dotted line segment in the figure) is $\ell$ then determine $ \ell^2$. [img]https://cdn.artofproblemsolving.com/attachments/5/6/63fed83742c8baa92d9e63962a77a57d43556f.png[/img]

2008 Postal Coaching, 5

Let $\omega$ be the semicircle on diameter $AB$. A line parallel to $AB$ intersects $\omega$ at $C$ and $D$ so that $B$ and $C$ lie on opposite sides of $AD$. The line through $C$ parallel to $AD$ meets $\omega$ again in $E$. Lines $BE$ and $CD$ meet in $F$ and the line through $F$ parallel to $AD$ meets $AB$ in $P$. Prove that $PC$ is tangent to $\omega$.

Cono Sur Shortlist - geometry, 1993.11

Let $\Gamma$ be a semicircle with center $O$ and diameter $AB$. $D$ is the midpoint of arc $AB$. On the ray $OD$, we take $E$ such that $OE = BD$. $BE$ intersects the semicircle at $F$ and $ P$ is the point on $AB$ such that $FP$ is perpendicular to $AB$. Prove that $BP=\frac13 AB$.

2008 India Regional Mathematical Olympiad, 1

On a semicircle with diameter $AB$ and centre $S$, points $C$ and $D$ are given such that point $C$ belongs to arc $AD$. Suppose $\angle CSD = 120^\circ$. Let $E$ be the point of intersection of the straight lines $AC$ and $BD$ and $F$ the point of intersection of the straight lines $AD$ and $BC$. Prove that $EF=\sqrt{3}AB$.

2013 BMT Spring, 4

Let $ABCD$ be a square with side length $2$, and let a semicircle with flat side $CD$ be drawn inside the square. Of the remaining area inside the square outside the semi-circle, the largest circle is drawn. What is the radius of this circle?

2020 Novosibirsk Oral Olympiad in Geometry, 1

Two semicircles touch the side of the rectangle, each other and the segment drawn in it as in the figure. What part of the whole rectangle is filled? [img]https://cdn.artofproblemsolving.com/attachments/3/e/70ca8b80240a282553294a58cb3ed807d016be.png[/img]

2012 India PRMO, 20

$PS$ is a line segment of length $4$ and $O$ is the midpoint of $PS$. A semicircular arc is drawn with $PS$ as diameter. Let $X$ be the midpoint of this arc. $Q$ and $R$ are points on the arc $PXS$ such that $QR$ is parallel to $PS$ and the semicircular arc drawn with $QR$ as diameter is tangent to $PS$. What is the area of the region $QXROQ$ bounded by the two semicircular arcs?

2018 Costa Rica - Final Round, G5

In the accompanying figure, semicircles with centers$ A$ and $B$ have radii $4$ and $2$, respectively. Furthermore, they are internally tangent to the circle of diameter $PQ$. Also the semicircles with centers $ A$ and $ B$ are externally tangent to each other. The circle with center $C$ is internally tangent to the semicircle with diameter $PQ$ and externally tangent to the others two semicircles. Determine the value of the radius of the circle with center $C$. [img]https://cdn.artofproblemsolving.com/attachments/c/b/281b335f6a2d6230a5b79060e6d85d6ca6f06c.png[/img]