Found problems: 321
2024 USA TSTST, 8
Let $ABC$ be a scalene triangle, and let $D$ be a point on side $BC$ satisfying $\angle BAD=\angle DAC$. Suppose that $X$ and $Y$ are points inside $ABC$ such that triangles $ABX$ and $ACY$ are similar and quadrilaterals $ACDX$ and $ABDY$ are cyclic. Let lines $BX$ and $CY$ meet at $S$ and lines $BY$ and $CX$ meet at $T$. Prove that lines $DS$ and $AT$ are parallel.
[i]Michael Ren[/i]
1989 All Soviet Union Mathematical Olympiad, 492
$ABC$ is a triangle. $A' , B' , C'$ are points on the segments $BC, CA, AB$ respectively. $\angle B' A' C' = \angle A$ , $\frac{AC'}{C'B} = \frac{BA' }{A' C} = \frac{CB'}{B'A}$. Show that $ABC$ and $A'B'C'$ are similar.
2005 AIME Problems, 11
A semicircle with diameter $d$ is contained in a square whose sides have length $8$. Given the maximum value of $d$ is $m- \sqrt{n}$, find $m+n$.
2021 Sharygin Geometry Olympiad, 10-11.7
Let $I$ be the incenter of a right-angled triangle $ABC$, and $M$ be the midpoint of hypothenuse $AB$. The tangent to the circumcircle of $ABC$ at $C$ meets the line passing through $I$ and parallel to $AB$ at point $P$. Let $H$ be the orthocenter of triangle $PAB$. Prove that lines $CH$ and $PM$ meet at the incircle of triangle $ABC$.
2013 Online Math Open Problems, 7
Points $M$, $N$, $P$ are selected on sides $\overline{AB}$, $\overline{AC}$, $\overline{BC}$, respectively, of triangle $ABC$. Find the area of triangle $MNP$ given that $AM=MB=BP=15$ and $AN=NC=CP=25$.
[i]Proposed by Evan Chen[/i]
2013 Irish Math Olympiad, 3
The altitudes of a triangle $\triangle ABC$ are used to form the sides of a second triangle $\triangle A_1B_1C_1$. The altitudes of $\triangle A_1B_1C_1$ are then used to form the sides of a third triangle $\triangle A_2B_2C_2$. Prove that $\triangle A_2B_2C_2$ is similar to $\triangle ABC$.
VMEO III 2006, 12.1
Given a triangle $ABC$ and a point $K$ . The lines $AK$,$BK$,$CK$ hit the opposite side of the triangle at $D,E,F$ respectively. On the exterior of $ABC$, we construct three pairs of similar triangles: $BDM$,$DCN$ on $BD$,$DC$, $CEP$,$EAQ$ on $CE$,$EA$, and $AFR$,$FBS$ on $AF$, $FB$. The lines $MN$,$PQ$,$RS$ intersect each other form a triangle $XYZ$. Prove that $AX$,$BY$,$CZ$ are concurrent.
1982 AMC 12/AHSME, 21
In the adjoining figure, the triangle $ABC$ is a right triangle with $\angle BCA=90^\circ$. Median $CM$ is perpendicular to median $BN$, and side $BC=s$. The length of $BN$ is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));real r=54.72;
pair B=origin, C=dir(r), A=intersectionpoint(B--(9,0), C--C+4*dir(r-90)), M=midpoint(B--A), N=midpoint(A--C), P=intersectionpoint(B--N, C--M);
draw(M--C--A--B--C^^B--N);
pair point=P;
markscalefactor=0.005;
draw(rightanglemark(C,P,B));
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$M$", M, S);
label("$N$", N, dir(C--A)*dir(90));
label("$s$", B--C, NW);[/asy]
$\textbf {(A) } s\sqrt 2 \qquad \textbf {(B) } \frac 32s\sqrt2 \qquad \textbf {(C) } 2s\sqrt2 \qquad \textbf {(D) } \frac 12s\sqrt5 \qquad \textbf {(E) } \frac 12s\sqrt6$
2018 Moldova Team Selection Test, 3
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
2012 Kyoto University Entry Examination, 2
Given a regular tetrahedron $OABC$. Take points $P,\ Q,\ R$ on the sides $OA,\ OB,\ OC$ respectively. Note that $P,\ Q,\ R$ are different from the vertices of the tetrahedron $OABC$. If $\triangle{PQR}$ is an equilateral triangle, then prove that three sides $PQ,\ QR,\ RP$ are pararell to three sides $AB,\ BC,\ CA$ respectively.
30 points
2011 Switzerland - Final Round, 8
Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic.
[i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]
2006 Purple Comet Problems, 17
A concrete sewer pipe fitting is shaped like a cylinder with diameter $48$ with a cone on top. A cylindrical hole of diameter $30$ is bored all the way through the center of the fitting as shown. The cylindrical portion has height $60$ while the conical top portion has height $20$. Find $N$ such that the volume of the concrete is $N \pi$.
[asy]
import three;
size(250);
defaultpen(linewidth(0.7)+fontsize(10)); pen dashes = linewidth(0.7) + linetype("2 2");
currentprojection = orthographic(0,-15,5);
draw(circle((0,0,0), 15),dashes);
draw(circle((0,0,80), 15));
draw(scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0)));
draw(shift((0,0,60))*scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0)));
draw((-24,0,0)--(-24,0,60)--(-15,0,80)); draw((24,0,0)--(24,0,60)--(15,0,80));
draw((-15,0,0)--(-15,0,80),dashes); draw((15,0,0)--(15,0,80),dashes);
draw("48", (-24,0,-20)--(24,0,-20));
draw((-15,0,-20)--(-15,0,-17)); draw((15,0,-20)--(15,0,-17));
label("30", (0,0,-15));
draw("60", (50,0,0)--(50,0,60));
draw("20", (50,0,60)--(50,0,80));
draw((50,0,60)--(47,0,60));[/asy]
2009 AIME Problems, 2
There is a complex number $ z$ with imaginary part $ 164$ and a positive integer $ n$ such that
\[ \frac {z}{z \plus{} n} \equal{} 4i.
\]Find $ n$.
2004 Germany Team Selection Test, 1
Let $ABC$ be an acute triangle, and let $M$ and $N$ be two points on the line $AC$ such that the vectors $MN$ and $AC$ are identical. Let $X$ be the orthogonal projection of $M$ on $BC$, and let $Y$ be the orthogonal projection of $N$ on $AB$. Finally, let $H$ be the orthocenter of triangle $ABC$.
Show that the points $B$, $X$, $H$, $Y$ lie on one circle.
2008 Harvard-MIT Mathematics Tournament, 3
Let $ ABC$ be a triangle with $ \angle BAC \equal{} 90^\circ$. A circle is tangent to the sides $ AB$ and $ AC$ at $ X$ and $ Y$ respectively, such that the points on the circle diametrically opposite $ X$ and $ Y$ both lie on the side $ BC$. Given that $ AB \equal{} 6$, find the area of the portion of the circle that lies outside the triangle.
[asy]import olympiad;
import math;
import graph;
unitsize(20mm);
defaultpen(fontsize(8pt));
pair A = (0,0);
pair B = A + right;
pair C = A + up;
pair O = (1/3, 1/3);
pair Xprime = (1/3,2/3);
pair Yprime = (2/3,1/3);
fill(Arc(O,1/3,0,90)--Xprime--Yprime--cycle,0.7*white);
draw(A--B--C--cycle);
draw(Circle(O, 1/3));
draw((0,1/3)--(2/3,1/3));
draw((1/3,0)--(1/3,2/3));
label("$A$",A, SW);
label("$B$",B, down);
label("$C$",C, left);
label("$X$",(1/3,0), down);
label("$Y$",(0,1/3), left);[/asy]
2022 Cono Sur, 2
Given is a triangle $ABC$ with incircle $\omega$, tangent to $BC, CA, AB$ at $D, E, F$. The perpendicular from $B$ to $BC$ meets $EF$ at $M$, and the perpendicular from $C$ to $BC$ meets $EF$ at $N$. Let $DM$ and $DN$ meet $\omega$ at $P$ and $Q$. Prove that $DP=DQ$.
2005 Manhattan Mathematical Olympiad, 4
Circle of radius $r$ is inscribed in a triangle. Tangent lines parallel to the sides of triangle cut three small triangles. Let $r_1,r_2,r_3$ be radii of circles inscribed in these triangles. Prove that \[ r_1 + r_2 + r_3 = r. \]
1957 AMC 12/AHSME, 49
The parallel sides of a trapezoid are $ 3$ and $ 9$. The non-parallel sides are $ 4$ and $ 6$. A line parallel to the bases divides the trapezoid into two trapezoids of equal perimeters. The ratio in which each of the non-parallel sides is divided is:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair A = origin;
pair B = (2.25,0);
pair C = (2,1);
pair D = (1,1);
pair E = waypoint(A--D,0.25);
pair F = waypoint(B--C,0.25);
draw(A--B--C--D--cycle);
draw(E--F);
label("6",midpoint(A--D),NW);
label("3",midpoint(C--D),N);
label("4",midpoint(C--B),NE);
label("9",midpoint(A--B),S);[/asy]$ \textbf{(A)}\ 4: 3\qquad \textbf{(B)}\ 3: 2\qquad \textbf{(C)}\ 4: 1\qquad \textbf{(D)}\ 3: 1\qquad \textbf{(E)}\ 6: 1$
2008 Mexico National Olympiad, 2
Consider a circle $\Gamma$, a point $A$ on its exterior, and the points of tangency $B$ and $C$ from $A$ to $\Gamma$. Let $P$ be a point on the segment $AB$, distinct from $A$ and $B$, and let $Q$ be the point on $AC$ such that $PQ$ is tangent to $\Gamma$. Points $R$ and $S$ are on lines $AB$ and $AC$, respectively, such that $PQ\parallel RS$ and $RS$ is tangent to $\Gamma$ as well. Prove that $[APQ]\cdot[ARS]$ does not depend on the placement of point $P$.
2023 UMD Math Competition Part II, 4
Assume every side length of a triangle $ABC$ is more than $2$ and two of its angles are given by $\angle ABC = 57^\circ$ and $ACB = 63^\circ$. Point $P$ is chosen on side $BC$ with $BP:PC = 2:1$. Points $M,N$ are chosen on sides $AB$ and $AC$, respectively so that $BM = 2$ and $CN = 1$. Let $Q$ be the point on segment $MN$ for which $MQ:QN = 2:1$. Find the value of $PQ$. Your answer must be in simplest form.
Russian TST 2018, P2
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
Swiss NMO - geometry, 2011.8
Let $ABCD$ be a parallelogram and $H$ the Orthocentre of $\triangle{ABC}$. The line parallel to $AB$ through $H$ intersects $BC$ at $P$ and $AD$ at $Q$ while the line parallel to $BC$ through $H$ intersects $AB$ at $R$ and $CD$ at $S$. Show that $P$, $Q$, $R$ and $S$ are concyclic.
[i](Swiss Mathematical Olympiad 2011, Final round, problem 8)[/i]
1990 Mexico National Olympiad, 6
$ABC$ is a triangle with $\angle C = 90^o$. $E$ is a point on $AC$, and $F$ is the midpoint of $EC$. $CH$ is an altitude. $I$ is the circumcenter of $AHE$, and $G$ is the midpoint of $BC$. Show that $ABC$ and $IGF$ are similar.
2003 Poland - Second Round, 5
Point $A$ lies outside circle $o$ of center $O$. From point $A$ draw two lines tangent to a circle $o$ in points $B$ and $C$. A tangent to a circle $o$ cuts segments $AB$ and $AC$ in points $E$ and $F$, respectively. Lines $OE$ and $OF$ cut segment $BC$ in points $P$ and $Q$, respectively. Prove that from line segments $BP$, $PQ$, $QC$ can construct triangle similar to triangle $AEF$.
1999 Tournament Of Towns, 1
The incentre of a triangle is joined by three segments to the three vertices of the triangle, thereby dividing it into three smaller triangles. If one of these three triangles is similar to the original triangle, find its angles.
(A Shapovalov)