This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 473

1988 IMO Longlists, 32

$n$ points are given on the surface of a sphere. Show that the surface can be divided into $n$ congruent regions such that each of them contains exactly one of the given points.

2020 AIME Problems, 7

Two congruent right circular cones each with base radius $3$ and height $8$ have axes of symmetry that intersect at right angles at a point in the interior of the cones a distance $3$ from the base of each cone. A sphere with radius $r$ lies inside both cones. The maximum possible value for $r^2$ is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2012 China Second Round Olympiad, 5

Suppose two regular pyramids with the same base $ABC$: $P-ABC$ and $Q-ABC$ are circumscribed by the same sphere. If the angle formed by one of the lateral face and the base of pyramid $P-ABC$ is $\frac{\pi}{4}$, find the tangent value of the angle formed by one of the lateral face and the base of the pyramid $Q-ABC$.

2005 BAMO, 5

Let $D$ be a dodecahedron which can be inscribed in a sphere with radius $R$. Let $I$ be an icosahedron which can also be inscribed in a sphere of radius $R$. Which has the greater volume, and why? Note: A regular [i]polyhedron [/i] is a geometric solid, all of whose faces are congruent regular polygons, in which the same number of polygons meet at each vertex. A regular dodecahedron is a polyhedron with $12$ faces which are regular pentagons and a regular icosahedron is a polyhedron with $20$ faces which are equilateral triangles. A polyhedron is inscribed in a sphere if all of its vertices lie on the surface of the sphere. The illustration below shows a dodecahdron and an icosahedron, not necessarily to scale. [img]https://cdn.artofproblemsolving.com/attachments/7/5/9873b42aacf04bb5daa0fe70d4da3bf0b7be38.png[/img]

1967 IMO Longlists, 25

Three disks of diameter $d$ are touching a sphere in their centers. Besides, every disk touches the other two disks. How to choose the radius $R$ of the sphere in order that axis of the whole figure has an angle of $60^\circ$ with the line connecting the center of the sphere with the point of the disks which is at the largest distance from the axis ? (The axis of the figure is the line having the property that rotation of the figure of $120^\circ$ around that line brings the figure in the initial position. Disks are all on one side of the plane, passing through the center of the sphere and orthogonal to the axis).

2009 All-Russian Olympiad, 3

Let $ ABCD$ be a triangular pyramid such that no face of the pyramid is a right triangle and the orthocenters of triangles $ ABC$, $ ABD$, and $ ACD$ are collinear. Prove that the center of the sphere circumscribed to the pyramid lies on the plane passing through the midpoints of $ AB$, $ AC$ and $ AD$.

2000 Belarus Team Selection Test, 1.4

A closed pentagonal line is inscribed in a sphere of the diameter $1$, and has all edges of length $\ell$. Prove that $\ell \le \sin \frac{2\pi}{5}$ .

2008 Harvard-MIT Mathematics Tournament, 12

Suppose we have an (infinite) cone $ \mathcal C$ with apex $ A$ and a plane $ \pi$. The intersection of $ \pi$ and $ \mathcal C$ is an ellipse $ \mathcal E$ with major axis $ BC$, such that $ B$ is closer to $ A$ than $ C$, and $ BC \equal{} 4$, $ AC \equal{} 5$, $ AB \equal{} 3$. Suppose we inscribe a sphere in each part of $ \mathcal C$ cut up by $ \mathcal E$ with both spheres tangent to $ \mathcal E$. What is the ratio of the radii of the spheres (smaller to larger)?

2000 Denmark MO - Mohr Contest, 2

Three identical spheres fit into a glass with rectangular sides and bottom and top in the form of regular hexagons such that every sphere touches every side of the glass. The glass has volume $108$ cm$^3$. What is the sidelength of the bottom? [img]https://1.bp.blogspot.com/-hBkYrORoBHk/XzcDt7B83AI/AAAAAAAAMXs/P5PGKTlNA7AvxkxMqG-qxqDVc9v9cU0VACLcBGAsYHQ/s0/2000%2BMohr%2Bp2.png[/img]

2011 Today's Calculation Of Integral, 768

Let $r$ be a real such that $0<r\leq 1$. Denote by $V(r)$ the volume of the solid formed by all points of $(x,\ y,\ z)$ satisfying \[x^2+y^2+z^2\leq 1,\ x^2+y^2\leq r^2\] in $xyz$-space. (1) Find $V(r)$. (2) Find $\lim_{r\rightarrow 1-0} \frac{V(1)-V(r)}{(1-r)^{\frac 32}}.$ (3) Find $\lim_{r\rightarrow +0} \frac{V(r)}{r^2}.$

1973 IMO Longlists, 1

Find the maximal positive number $r$ with the following property: If all altitudes of a tetrahedron are $\geq 1$, then a sphere of radius $r$ fits into the tetrahedron.

2007 Polish MO Finals, 5

5. In tetrahedron $ABCD$ following equalities hold: $\angle BAC+\angle BDC=\angle ABD+\angle ACD$ $\angle BAD+\angle BCD=\angle ABC+\angle ADC$ Prove that center of sphere circumscribed about ABCD lies on a line through midpoints of $AB$ and $CD$.

1976 IMO Longlists, 17

Show that there exists a convex polyhedron with all its vertices on the surface of a sphere and with all its faces congruent isosceles triangles whose ratio of sides are $\sqrt{3} :\sqrt{3} :2$.

2000 Romania Team Selection Test, 3

Let $S$ be the set of interior points of a sphere and $C$ be the set of interior points of a circle. Find, with proof, whether there exists a function $f:S\rightarrow C$ such that $d(A,B)\le d(f(A),f(B))$ for any two points $A,B\in S$ where $d(X,Y)$ denotes the distance between the points $X$ and $Y$. [i]Marius Cavachi[/i]

1995 China National Olympiad, 1

Given four spheres with their radii equal to $2,2,3,3$ respectively, each sphere externally touches the other spheres. Suppose that there is another sphere that is externally tangent to all those four spheres, determine the radius of this sphere.

1978 IMO Shortlist, 13

We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.

2008 Sharygin Geometry Olympiad, 23

(V.Protasov, 10--11) In the space, given two intersecting spheres of different radii and a point $ A$ belonging to both spheres. Prove that there is a point $ B$ in the space with the following property: if an arbitrary circle passes through points $ A$ and $ B$ then the second points of its meet with the given spheres are equidistant from $ B$.

2007 Hungary-Israel Binational, 2

Given is an ellipse $ e$ in the plane. Find the locus of all points $ P$ in space such that the cone of apex $ P$ and directrix $ e$ is a right circular cone.

1968 Putnam, A4

Let $S^{2}\subset \mathbb{R}^{3}$ be the unit sphere. Show that for any $n$ points on $ S^{2}$, the sum of the squares of the $\frac{n(n-1)}{2}$ distances between them is at most $n^{2}$.

1985 IMO Shortlist, 9

Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$

1998 AIME Problems, 10

Eight spheres of radius 100 are placed on a flat surface so that each sphere is tangent to two others and their centers are the vertices of a regular octagon. A ninth sphere is placed on the flat surface so that it is tangent to each of the other eight spheres. The radius of this last sphere is $a+b\sqrt{c},$ where $a, b,$ and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$

1991 Poland - Second Round, 6

The parallelepiped contains a sphere of radius $r$ and is contained within a sphere of radius $R$. Prove that $ \frac{R}{r} \geq \sqrt{3} $.

1969 IMO Longlists, 32

$(GDR 4)$ Find the maximal number of regions into which a sphere can be partitioned by $n$ circles.

2013 F = Ma, 10

Which of the following can be used to distinguish a solid ball from a hollow sphere of the same radius and mass? $\textbf{(A)}$ Measurements of the orbit of a test mass around the object. $\textbf{(B)}$ Measurements of the time it takes the object to roll down an inclined plane. $\textbf{(C)}$ Measurements of the tidal forces applied by the object to a liquid body. $\textbf{(D)}$ Measurements of the behavior of the object as it oats in water. $\textbf{(E)}$ Measurements of the force applied to the object by a uniform gravitational field.

2019 Canadian Mathematical Olympiad Qualification, 2

Rosemonde is stacking spheres to make pyramids. She constructs two types of pyramids $S_n$ and $T_n$. The pyramid $S_n$ has $n$ layers, where the top layer is a single sphere and the $i^{th}$ layer is an $i\times $i square grid of spheres for each $2 \le i \le n$. Similarly, the pyramid $T_n$ has $n$ layers where the top layer is a single sphere and the $i^{th}$ layer is $\frac{i(i+1)}{2}$ spheres arranged into an equilateral triangle for each $2 \le i \le n$.