This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 467

1990 Tournament Of Towns, (248) 2

If a square is intersected by another square equal to it but rotated by $45^o$ around its centre, each side is divided into three parts in a certain ratio $a : b : a$ (which one can compute). Make the following construction for an arbitrary convex quadrilateral: divide each of its sides into three parts in this same ratio $a : b : a$, and draw a line through the two division points neighbouring each vertex. Prove that the new quadrilateral bounded by the four drawn lines has the same area as the original one. (A. Savin, Moscow)

1973 Chisinau City MO, 66

If $A$ and $B$ are points of the plane, then by $A * B$ we denote a point symmetric to $A$ with respect to $B$. Is it possible, by applying the operation $*$ several times, to obtain from the three vertices of a given square its fourth vertex?

2021 Francophone Mathematical Olympiad, 3

Let $ABCD$ be a square with incircle $\Gamma$. Let $M$ be the midpoint of the segment $[CD]$. Let $P \neq B$ be a point on the segment $[AB]$. Let $E \neq M$ be the point on $\Gamma$ such that $(DP)$ and $(EM)$ are parallel. The lines $(CP)$ and $(AD)$ meet each other at $F$. Prove that the line $(EF)$ is tangent to $\Gamma$

2012 BMT Spring, 3

Tags: geometry , ratio , square , area
Let $ABC$ be a triangle with side lengths $AB = 2011$, $BC = 2012$, $AC = 2013$. Create squares $S_1 =ABB'A''$, $S_2 = ACC''A'$ , and $S_3 = CBB''C'$ using the sides $AB$, $AC$, $BC$ respectively, so that the side $B'A''$ is on the opposite side of $AB$ from $C$, and so forth. Let square $S_4$ have side length $A''A' $, square $S_5$ have side length $C''C'$, and square $S_6$ have side length $B''B'$. Let $A(S_i)$ be the area of square $S_i$ . Compute $\frac{A(S_4)+A(S_5)+A(S_6)}{A(S_1)+A(S_2)+A(S_3)}$?

1958 November Putnam, B3

Tags: square , diameter
Show that if a unit square is partitioned into two sets, then the diameter (least upper bound of the distances between pairs of points) of one of the sets is not less than $\sqrt{5} \slash 2.$ Show also that no larger number will do.

2012 Ukraine Team Selection Test, 10

A unit square is cut by $n$ straight lines . Prove that in at least one of these parts one can completely fit a square with side $\frac{1}{n+1}$ [hide=original wording]Одиничний квадрат розрізано $n$ прямими на частини. Доведіть, що хоча б в одній з цих частин можна повністю розмістити квадрат зі стороною $\frac{1}{n+1}$[/hide] [hide=notes] The selection panel jury made a mistake because the solution known to it turned out to be incorrect. As it turned out, the assertion of the problem is still correct, although it cannot be proved by simple methods, see. article: Keith Ball. Тhe plank problem for symmetric bodies // Іпѵепііопез МаіЬешаІіеае. — 1991. — Ѵоі. 104, по. 1. — Р. 535-543. [url]https://arxiv.org/abs/math/9201218[/url][/hide]

1996 Singapore Team Selection Test, 1

Let $P$ be a point on the side $AB$ of a square $ABCD$ and $Q$ a point on the side $BC$. Let $H$ be the foot of the perpendicular from $B$ to $PC$. Suppose that $BP = BQ$. Prove that $QH$ is perpendicular to $HD$.

2017 Oral Moscow Geometry Olympiad, 1

One square is inscribed in a circle, and another square is circumscribed around the same circle so that its vertices lie on the extensions of the sides of the first (see figure). Find the angle between the sides of these squares. [img]https://3.bp.blogspot.com/-8eLBgJF9CoA/XTodHmW87BI/AAAAAAAAKY0/xsHTx71XneIZ8JTn0iDMHupCanx-7u4vgCK4BGAYYCw/s400/sharygin%2Boral%2B2017%2B10-11%2Bp1.png[/img]

1974 IMO Longlists, 23

Prove that the squares with sides $\frac{1}{1}, \frac{1}{2}, \frac{1}{3},\ldots$ may be put into the square with side $\frac{3}{2} $ in such a way that no two of them have any interior point in common.

2020 Adygea Teachers' Geometry Olympiad, 2

The square $ABCD$ is inscribed in a circle. Points $E$ and $F$ are located on the side of the square, and points $G$ and $H$ are located on the smaller arc $AB$ of the circle so that the $EFGH$ is a square. Find the area ratio of these squares.

1995 Bundeswettbewerb Mathematik, 4

A number of unit discs are given inside a square of side $100$ such that (i) no two of the discs have a common interior point, and (ii) every segment of length $10$, lying entirely within the square, meets at least one disc. Prove that there are at least $400$ discs in the square.

2001 Denmark MO - Mohr Contest, 5

Is it possible to place within a square an equilateral triangle whose area is larger than $9/ 20$ of the area of the square?

2009 Swedish Mathematical Competition, 1

Tags: geometry , square , area
Five square carpets have been bought for a square hall with a side of $6$ m , two with the side $2$ m, one with the side $2.1$ m and two with the side $2.5$ m. Is it possible to place the five carpets so that they do not overlap in any way each other? The edges of the carpets do not have to be parallel to the cradles in the hall.

2003 BAMO, 5

Let $ABCD$ be a square, and let $E$ be an internal point on side $AD$. Let $F$ be the foot of the perpendicular from $B$ to $CE$. Suppose $G$ is a point such that $BG = FG$, and the line through $G$ parallel to $BC$ passes through the midpoint of $EF$. Prove that $AC < 2 \cdot FG$.

2018 Junior Regional Olympiad - FBH, 5

It is given square $ABCD$ which is circumscribed by circle $k$. Let us construct a new square so vertices $E$ and $F$ lie on side $ABCD$ and vertices $G$ and $H$ on arc $AB$ of circumcircle. Find out the ratio of area of squares

Ukrainian TYM Qualifying - geometry, 2020.12

On the side $CD$ of the square $ABCD$, the point $F$ is chosen and the equal squares $DGFE$ and $AKEH$ are constructed ($E$ and $H$ lie inside the square). Let $M$ be the midpoint of $DF$, $J$ is the incenter of the triangle $CFH$. Prove that: a) the points $D, K, H, J, F$ lie on the same circle; b) the circles inscribed in triangles $CFH$ and $GMF$ have the same radii.

2017 Oral Moscow Geometry Olympiad, 5

Tags: geometry , area , square
Two squares are arranged as shown. Prove that the area of the black triangle equal to the sum of the gray areas. [img]https://2.bp.blogspot.com/-byhWqNr1ras/XTq-NWusg2I/AAAAAAAAKZA/1sxEZ751v_Evx1ij7K_CGiuZYqCjhm-mQCK4BGAYYCw/s400/Oral%2BSharygin%2B2017%2B8.9%2Bp5.png[/img]

2020 Novosibirsk Oral Olympiad in Geometry, 2

A $2 \times 2$ square was cut out of a sheet of grid paper. Using only a ruler without divisions and without going beyond the square, divide the diagonal of the square into $6$ equal parts.

2021 Malaysia IMONST 1, 1

Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so? [img]https://cdn.artofproblemsolving.com/attachments/8/9/6345d7150298fe26cfcfba554656804ed25a6d.jpg[/img]

1975 Chisinau City MO, 111

Three squares are constructed on the sides of the triangle to the outside. What should be the angles of the triangle so that the six vertices of these squares, other than the vertices of the triangle, lie on the same circle?

2022 Centroamerican and Caribbean Math Olympiad, 4

Let $A_1A_2A_3A_4$ be a rectangle and let $S_1,S_2,S_3,S_4$ four circumferences inside of the rectangle such that $S_k$ and $S_{k+1}$ are tangent to each other and tangent to the side $A_kA_{k+1}$ for $k=1,2,3,4$, where $A_5=A_1$ and $S_5=S_1$. Prove that $A_1A_2A_3A_4$ is a square.

2013 May Olympiad, 3

Let $ABCD$ be a square of side paper $10$ and $P$ a point on side $BC$. By folding the paper along the $AP$ line, point $B$ determines the point $Q$, as seen in the figure. The line $PQ$ cuts the side $CD$ at $R$. Calculate the perimeter of the triangle $ PCR$ [img]https://3.bp.blogspot.com/-ZSyCUznwutE/XNY7cz7reQI/AAAAAAAAKLc/XqgQnjm8DQYq6Q7fmCAKJwKt3ihoL8AuQCK4BGAYYCw/s400/may%2B2013%2Bl1.png[/img]

2008 District Olympiad, 1

A regular tetrahedron is sectioned with a plane after a rhombus. Prove that the rhombus is square.

1996 May Olympiad, 4

Tags: geometry , square , angle
Let $ABCD$ be a square and let point $F$ be any point on side $BC$. Let the line perpendicular to $DF$, that passes through $B$, intersect line $DC$ at $Q$. What is value of $\angle FQC$?

1970 Dutch Mathematical Olympiad, 3

The points $P,Q,R$ and $A,B,C,D$ lie on a circle (clockwise) such that $\vartriangle PQR$ is equilateral and $ABCD$ is a square. The points $A$ and $P$ coincide. Prove that the symmetric of $B$ and $D$ wrt $PQ$ and $PR$ respectively lie on the sidelines of the symmetric square wrt $QR$.