Found problems: 701
2014 China National Olympiad, 1
Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.
2013 AMC 8, 20
A $1\times 2$ rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle?
$\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3$
2014 NIMO Problems, 2
Two points $A$ and $B$ are selected independently and uniformly at random along the perimeter of a unit square with vertices at $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. The probability that the $y$-coordinate of $A$ is strictly greater than the $y$-coordinate of $B$ can be expressed as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$.
[i]Proposed by Rajiv Movva[/i]
2008 Turkey Junior National Olympiad, 1
Let $ABC$ be a right triangle with $m(\widehat {C}) = 90^\circ$, and $D$ be its incenter. Let $N$ be the intersection of the line $AD$ and the side $CB$. If $|CA|+|AD|=|CB|$, and $|CN|=2$, then what is $|NB|$?
2009 Balkan MO Shortlist, C1
A $ 9 \times 12$ rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres $ C_1,C_2,\ldots ,C_{96}$ in such way that the following to conditions are both fulfilled
i) the distances $C_1C_2,\ldots ,C_{95}C_{96}, C_{96}C_{1}$ are all equal to $ \sqrt {13}$,
ii) the closed broken line $ C_1C_2\ldots C_{96}C_1$ has a centre of symmetry?
[i]Bulgaria[/i]
2008 Sharygin Geometry Olympiad, 1
(A.Zaslavsky) A convex polygon can be divided into 2008 congruent quadrilaterals. Is it true that this polygon has a center or an axis of symmetry?
2011 Junior Balkan MO, 3
Let $n>3$ be a positive integer. Equilateral triangle ABC is divided into $n^2$ smaller congruent equilateral triangles (with sides parallel to its sides). Let $m$ be the number of rhombuses that contain two small equilateral triangles and $d$ the number of rhombuses that contain eight small equilateral triangles. Find the difference $m-d$ in terms of $n$.
2014 Contests, 1
Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.
2008 All-Russian Olympiad, 8
In a chess tournament $ 2n\plus{}3$ players take part. Every two play exactly one match. The schedule is such that no two matches are played at the same time, and each player, after taking part in a match, is free in at least $ n$ next (consecutive) matches. Prove that one of the players who play in the opening match will also play in the closing match.
2012-2013 SDML (Middle School), 8
An octomino is made by joining $8$ congruent squares edge to edge. Three examples are shown below. How many octominoes have at least $2$ lines of symmetry?
[asy]
size(8cm,0);
filldraw((0,1)--(0,2)--(1,2)--(1,1)--cycle,grey);
filldraw((0,2)--(0,3)--(1,3)--(1,2)--cycle,grey);
filldraw((0,3)--(0,4)--(1,4)--(1,3)--cycle,grey);
filldraw((1,0)--(1,1)--(2,1)--(2,0)--cycle,grey);
filldraw((1,1)--(1,2)--(2,2)--(2,1)--cycle,grey);
filldraw((1,2)--(1,3)--(2,3)--(2,2)--cycle,grey);
filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle,grey);
filldraw((2,2)--(2,3)--(3,3)--(3,2)--cycle,grey);
filldraw((4,0)--(4,1)--(5,1)--(5,0)--cycle,grey);
filldraw((4,1)--(4,2)--(5,2)--(5,1)--cycle,grey);
filldraw((4,2)--(4,3)--(5,3)--(5,2)--cycle,grey);
filldraw((4,3)--(4,4)--(5,4)--(5,3)--cycle,grey);
filldraw((5,1)--(5,2)--(6,2)--(6,1)--cycle,grey);
filldraw((5,3)--(5,4)--(6,4)--(6,3)--cycle,grey);
filldraw((6,2)--(6,3)--(7,3)--(7,2)--cycle,grey);
filldraw((6,3)--(6,4)--(7,4)--(7,3)--cycle,grey);
filldraw((8,3)--(8,4)--(9,4)--(9,3)--cycle,grey);
filldraw((9,3)--(9,4)--(10,4)--(10,3)--cycle,grey);
filldraw((10,3)--(10,4)--(11,4)--(11,3)--cycle,grey);
filldraw((11,2)--(11,3)--(12,3)--(12,2)--cycle,grey);
filldraw((11,3)--(11,4)--(12,4)--(12,3)--cycle,grey);
filldraw((12,2)--(12,3)--(13,3)--(13,2)--cycle,grey);
filldraw((12,3)--(12,4)--(13,4)--(13,3)--cycle,grey);
filldraw((13,3)--(13,4)--(14,4)--(14,3)--cycle,grey);
[/asy]
2008 Junior Balkan Team Selection Tests - Romania, 3
Let $ n$ be a positive integer and let $ a_1,a_2,\ldots,a_n$ be positive real numbers such that:
\[ \sum^n_{i \equal{} 1} a_i \equal{} \sum^n_{i \equal{} 1} \frac {1}{a_i^2}.
\]
Prove that for every $ i \equal{} 1,2,\ldots,n$ we can find $ i$ numbers with sum at least $ i$.
2014 Postal Coaching, 2
Let $ABCD$ be a circumscribed quadrilateral. Its incircle $\omega$ touches the sides $BC$ and $DA$ at points $E$ and $F$ respectively. It is known that lines $AB,FE$ and $CD$ concur. The circumcircles of triangles $AED$ and $BFC$ meet $\omega$ for the second time at points $E_1$ and $F_1$. Prove that $EF$ is parallel to $E_1 F_1$.
2008 Paraguay Mathematical Olympiad, 5
Let $m,n,p$ be rational numbers such that $\sqrt{m} + \sqrt{n} + \sqrt{p}$ is a rational number. Prove that $\sqrt{m}, \sqrt{n}, \sqrt{p}$ are also rational numbers
2007 Croatia Team Selection Test, 5
Let there be two circles. Find all points $M$ such that there exist two points, one on each circle such that $M$ is their midpoint.
2013 AMC 10, 12
Let $S$ be the set of sides and diagonals of a regular pentagon. A pair of elements of $S$ are selected at random without replacement. What is the probability that the two chosen segments have the same length?
$ \textbf{(A) }\frac25\qquad\textbf{(B) }\frac49\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac59\qquad\textbf{(E) }\frac45 $
1999 Belarusian National Olympiad, 4
A circle is inscribed in the trapezoid [i]ABCD[/i]. Let [i]K, L, M, N[/i] be the points of tangency of this circle with the diagonals [i]AC[/i] and [i]BD[/i], respectively ([i]K[/i] is between [i]A[/i] and [i]L[/i], and [i]M[/i] is between [i]B[/i] and [i]N[/i]). Given that $AK\cdot LC=16$ and $BM\cdot ND=\frac94$, find the radius of the circle.
[color=red][Moderator edit: A solution of this problem can be found on http://www.ajorza.org/math/mathfiles/scans/belarus.pdf , page 20 (the statement of the problem is on page 6). The author of the problem is I. Voronovich.][/color]
2014 National Olympiad First Round, 24
If the integers $1,2,\dots,n$ can be divided into two sets such that each of the two sets does not contain the arithmetic mean of its any two elements, what is the largest possible value of $n$?
$
\textbf{(A)}\ 7
\qquad\textbf{(B)}\ 8
\qquad\textbf{(C)}\ 9
\qquad\textbf{(D)}\ 10
\qquad\textbf{(E)}\ \text{None of the preceding}
$
2007 Putnam, 2
Suppose that $ f: [0,1]\to\mathbb{R}$ has a continuous derivative and that $ \int_0^1f(x)\,dx\equal{}0.$
Prove that for every $ \alpha\in(0,1),$
\[ \left|\int_0^{\alpha}f(x)\,dx\right|\le\frac18\max_{0\le x\le 1}|f'(x)|\]
1987 IberoAmerican, 2
In a triangle $ABC$, $M$ and $N$ are the respective midpoints of the sides $AC$ and $AB$, and $P$ is the point of intersection of $BM$ and $CN$. Prove that, if it is possible to inscribe a circle in the quadrilateral $AMPN$, then the triangle $ABC$ is isosceles.
2014 ELMO Shortlist, 12
Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
[i]Proposed by David Stoner[/i]
2008 Mongolia Team Selection Test, 2
The quadrilateral $ ABCD$ inscribed in a circle wich has diameter $ BD$. Let $ A',B'$ are symmetric to $ A,B$ with respect to the line $ BD$ and $ AC$ respectively. If $ A'C \cap BD \equal{} P$ and $ AC\cap B'D \equal{} Q$ then prove that $ PQ \perp AC$
2007 China Team Selection Test, 2
Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to
$ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.
2012 Greece JBMO TST, 3
Let $ABC$ be an acute triangle with $AB<AC<BC$, inscribed in circle $c(O,R)$ (with center $O$ and radius $R$). Let $O_1$ be the symmetric point of $O$ wrt $AC$. Circle $c_1(O_1,R)$ intersects $BC$ at $Z$. If the extension of the altitude $AD$ intersects the cicrumscribed circle $c(O,R)$ at point $E$, prove that $EC$ is perpendicular on $AZ$.
1996 Iran MO (3rd Round), 5
Let $O$ be the circumcenter and $H$ the orthocenter of an acute-angled triangle $ABC$ such that $BC>CA$. Let $F$ be the foot of the altitude $CH$ of triangle $ABC$. The perpendicular to the line $OF$ at the point $F$ intersects the line $AC$ at $P$. Prove that $\measuredangle FHP=\measuredangle BAC$.
1988 Tournament Of Towns, (169) 2
We are given triangle $ABC$. Two lines, symmetric with $AC$, relative to lines $AB$ and $BC$ are drawn, and meet at $K$ . Prove that the line $BK$ passes through the centre of the circumscribed circle of triangle $ABC$.
(V.Y. Protasov)