This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 701

2010 AMC 12/AHSME, 18

A 16-step path is to go from $ ( \minus{} 4, \minus{}4)$ to $ (4,4)$ with each step increasing either the $x$-coordinate or the $y$-coordinate by 1. How many such paths stay outside or on the boundary of the square $ \minus{} 2 \le x \le 2$, $ \minus{} 2 \le y \le 2$ at each step? $ \textbf{(A)}\ 92 \qquad \textbf{(B)}\ 144 \qquad \textbf{(C)}\ 1568 \qquad \textbf{(D)}\ 1698 \qquad \textbf{(E)}\ 12,\!800$

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.

2007 Canada National Olympiad, 5

Let the incircle of triangle $ ABC$ touch sides $ BC,\, CA$ and $ AB$ at $ D,\, E$ and $ F,$ respectively. Let $ \omega,\,\omega_{1},\,\omega_{2}$ and $ \omega_{3}$ denote the circumcircles of triangle $ ABC,\, AEF,\, BDF$ and $ CDE$ respectively. Let $ \omega$ and $ \omega_{1}$ intersect at $ A$ and $ P,\,\omega$ and $ \omega_{2}$ intersect at $ B$ and $ Q,\,\omega$ and $ \omega_{3}$ intersect at $ C$ and $ R.$ $ a.$ Prove that $ \omega_{1},\,\omega_{2}$ and $ \omega_{3}$ intersect in a common point. $ b.$ Show that $ PD,\, QE$ and $ RF$ are concurrent.

1986 IMO Longlists, 41

Let $M,N,P$ be the midpoints of the sides $BC, CA, AB$ of a triangle $ABC$. The lines $AM, BN, CP$ intersect the circumcircle of $ABC$ at points $A',B', C'$, respectively. Show that if $A'B'C'$ is an equilateral triangle, then so is $ABC.$

Kyiv City MO 1984-93 - geometry, 1992.9.3

Tags: geometry , symmetry
Prove that a bounded figure cannot have more than one center of symmetry.

2003 All-Russian Olympiad, 3

On a line are given $2k -1$ white segments and $2k -1$ black ones. Assume that each white segment intersects at least $k$ black segments, and each black segment intersects at least $k$ white ones. Prove that there are a black segment intersecting all the white ones, and a white segment intersecting all the black ones.

PEN A Problems, 4

If $a, b, c$ are positive integers such that \[0 < a^{2}+b^{2}-abc \le c,\] show that $a^{2}+b^{2}-abc$ is a perfect square.

2008 China Western Mathematical Olympiad, 2

In triangle $ ABC$, $ AB\equal{}AC$, the inscribed circle $ I$ touches $ BC, CA, AB$ at points $ D,E$ and $ F$ respectively. $ P$ is a point on arc $ EF$ opposite $ D$. Line $ BP$ intersects circle $ I$ at another point $ Q$, lines $ EP$, $ EQ$ meet line $ BC$ at $ M, N$ respectively. Prove that (1) $ P, F, B, M$ concyclic (2)$ \frac{EM}{EN} \equal{} \frac{BD}{BP}$ (P.S. Can anyone help me with using GeoGebra, the incircle function of the plugin doesn't work with my computer.)

2009 JBMO Shortlist, 4

Let $ x$, $ y$, $ z$ be real numbers such that $ 0 < x,y,z < 1$ and $ xyz \equal{} (1 \minus{} x)(1 \minus{} y)(1 \minus{} z)$. Show that at least one of the numbers $ (1 \minus{} x)y,(1 \minus{} y)z,(1 \minus{} z)x$ is greater than or equal to $ \frac {1}{4}$

1995 All-Russian Olympiad, 3

Can the equation $f(g(h(x))) = 0$, where $f$, $g$, $h$ are quadratic polynomials, have the solutions $1, 2, 3, 4, 5, 6, 7, 8$? [i]S. Tokarev[/i]

1992 China National Olympiad, 1

A convex quadrilateral $ABCD$ is inscribed in a circle with center $O$. The diagonals $AC$, $BD$ of $ABCD$ meet at $P$. Circumcircles of $\triangle ABP$ and $\triangle CDP$ meet at $P$ and $Q$ ($O,P,Q$ are pairwise distinct). Show that $\angle OQP=90^{\circ}$.

2024 All-Russian Olympiad, 2

Tags: symmetry , algebra
Call a triple $(a,b,c)$ of positive numbers [i]mysterious [/i]if \[\sqrt{a^2+\frac{1}{a^2c^2}+2ab}+\sqrt{b^2+\frac{1}{b^2a^2}+2bc}+\sqrt{c^2+\frac{1}{c^2b^2}+2ca}=2(a+b+c).\] Prove that if the triple $(a,b,c)$ is mysterious, then so is the triple $(c,b,a)$. [i]Proposed by A. Kuznetsov, K. Sukhov[/i]

1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 9

We draw a circle with radius 5 on a gridded paper where the grid consists of squares with sides of length 1. The center of the circle is placed in the middle of one of the squares. All the squares through which the circle passes are colored. How many squares are colored? (The figure illustrates this for a smaller circle.) [img]http://i250.photobucket.com/albums/gg265/geometry101/NielsHenrikAbel1995Number9.jpg[/img] A. 24 B. 32 C. 40 D. 64 E. None of these

2014 Spain Mathematical Olympiad, 1

Is it possible to place the numbers $0,1,2,\dots,9$ on a circle so that the sum of any three consecutive numbers is a) 13, b) 14, c) 15?

1985 IMO Shortlist, 12

A sequence of polynomials $P_m(x, y, z), m = 0, 1, 2, \cdots$, in $x, y$, and $z$ is defined by $P_0(x, y, z) = 1$ and by \[P_m(x, y, z) = (x + z)(y + z)P_{m-1}(x, y, z + 1) - z^2P_{m-1}(x, y, z)\] for $m > 0$. Prove that each $P_m(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of $x, y, z.$

2013 Dutch IMO TST, 5

Let $ABCDEF$ be a cyclic hexagon satisfying $AB\perp BD$ and $BC=EF$.Let $P$ be the intersection of lines $BC$ and $AD$ and let $Q$ be the intersection of lines $EF$ and $AD$.Assume that $P$ and $Q$ are on the same side of $D$ and $A$ is on the opposite side.Let $S$ be the midpoint of $AD$.Let $K$ and $L$ be the incentres of $\triangle BPS$ and $\triangle EQS$ respectively.Prove that $\angle KDL=90^0$.

2005 Sharygin Geometry Olympiad, 18

On the plane are three straight lines $\ell_1, \ell_2,\ell_3$, forming a triangle, and the point $O$ is marked, the center of the circumscribed circle of this triangle. For an arbitrary point X of the plane, we denote by $X_i$ the point symmetric to the point X with respect to the line $\ell_i, i = 1,2,3$. a) Prove that for an arbitrary point $M$ the straight lines connecting the midpoints of the segments $O_1O_2$ and $M_1M_2, O_2O_3$ and $M_2M_3, O_3O_1$ and $M_3M_1$ intersect at one point, b) where can this intersection point lie?

1991 Arnold's Trivium, 100

Find the mathematical expectation of the area of the projection of a cube with edge of length $1$ onto a plane with an isotropically distributed random direction of projection.

2018 Romania National Olympiad, 2

In the square $ABCD$ the point $E$ is located on the side $[AB]$, and $F$ is the foot of the perpendicular from $B$ on the line $DE$. The point $L$ belongs to the line $DE$, such that $F$ is between $E$ and $L$, and $FL = BF$. $N$ and $P$ are symmetric of the points $A , F$ with respect to the lines $DE, BL$, respectively. Prove that: a) The quadrilateral $BFLP$ is square and the quadrilateral $ALND$ is rhombus. b) The area of the rhombus $ALND$ is equal to the difference between the areas of the squares $ABCD$ and $BFLP$.

2013 Saint Petersburg Mathematical Olympiad, 5

Tags: geometry , symmetry
Given quadrilateral $ABCD$ with $AB=BC=CD$. Let $AC\cap BD=O$, $X,Y$ are symmetry points of $O$ respect to midpoints of $BC$, $AD$, and $Z$ is intersection point of lines, which perpendicular bisects of $AC$, $BD$. Prove that $X,Y,Z$ are collinear.

2000 Iran MO (2nd round), 2

The points $D,E$ and $F$ are chosen on the sides $BC,AC$ and $AB$ of triangle $ABC$, respectively. Prove that triangles $ABC$ and $DEF$ have the same centroid if and only if \[\frac{BD}{DC} = \frac{CE}{EA}=\frac{AF}{FB}\]

1966 IMO Longlists, 57

Is it possible to choose a set of $100$ (or $200$) points on the boundary of a cube such that this set is fixed under each isometry of the cube into itself? Justify your answer.

1987 China Team Selection Test, 1

Given a convex figure in the Cartesian plane that is symmetric with respect of both axis, we construct a rectangle $A$ inside it with maximum area (over all posible rectangles). Then we enlarge it with center in the center of the rectangle and ratio lamda such that is covers the convex figure. Find the smallest lamda such that it works for all convex figures.

2016 Indonesia TST, 2

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

2015 Azerbaijan JBMO TST, 3

There is a triangle $ABC$ that $AB$ is not equal to $AC$.$BD$ is interior bisector of $\angle{ABC}$($D\in AC$) $M$ is midpoint of $CBA$ arc.Circumcircle of $\triangle{BDM}$ cuts $AB$ at $K$ and $J,$ is symmetry of $A$ according $K$.If $DJ\cap AM=(O)$, Prove that $J,B,M,O$ are cyclic.