This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 353

Denmark (Mohr) - geometry, 1999.1

In a coordinate system, a circle with radius $7$ and center is on the y-axis placed inside the parabola with equation $y = x^2$ , so that it just touches the parabola in two points. Determine the coordinate set for the center of the circle.

2024 Brazil National Olympiad, 4

Tags: tangent , geometry
Let \( ABC \) be an acute-angled scalene triangle. Let \( D \) be a point on the interior of segment \( BC \), different from the foot of the altitude from \( A \). The tangents from \( A \) and \( B \) to the circumcircle of triangle \( ABD \) meet at \( O_1 \), and the tangents from \( A \) and \( C \) to the circumcircle of triangle \( ACD \) meet at \( O_2 \). Show that the circle centered at \( O_1 \) passing through \( A \), the circle centered at \( O_2 \) passing through \( A \), and the line \( BC \) have a common point.

2022 Iran Team Selection Test, 8

In triangle $ABC$, with $AB<AC$, $I$ is the incenter, $E$ is the intersection of $A$-excircle and $BC$. Point $F$ lies on the external angle bisector of $BAC$ such that $E$ and $F$ lieas on the same side of the line $AI$ and $\angle AIF=\angle AEB$. Point $Q$ lies on $BC$ such that $\angle AIQ=90$. Circle $\omega_b$ is tangent to $FQ$ and $AB$ at $B$, circle $\omega_c$ is tangent to $FQ$ and $AC$ at $C$ and both circles pass through the inside of triangle $ABC$. if $M$ is the Midpoint od the arc $BC$, which does not contain $A$, prove that $M$ lies on the radical axis of $\omega_b$ and $\omega_c$. Proposed by Amirmahdi Mohseni

2007 Oral Moscow Geometry Olympiad, 4

Let $I$ be the center of a circle inscribed in triangle $ABC$. The circle circumscribed about the triangle $BIC$ intersects lines $AB$ and $AC$ at points $E$ and $F$, respectively. Prove that the line $EF$ touches the circle inscribed in the triangle $ABC$.

2018 Brazil Team Selection Test, 4

Consider an isosceles triangle $ABC$ with $AB = AC$. Let $\omega(XYZ)$ be the circumcircle of the triangle $XY Z$. The tangents to $\omega(ABC)$ through $B$ and $C$ meet at the point $D$. The point $F$ is marked on the arc $AB$ of $\omega(ABC)$ that does not contain $C$. Let $K$ be the point of intersection of lines $AF$ and $BD$ and $L$ the point of intersection of the lines $AB$ and $CF$. Let $T$ and $S$ be the centers of the circles $\omega(BLC)$ and $\omega(BLK)$, respectively. Suppose that the circles $\omega(BTS)$ and $\omega(CFK)$ are tangent to each other at the point $P$. Prove that $P$ belongs to the line $AB$.

2008 Korea Junior Math Olympiad, 5

Let there be a pentagon $ABCDE$ inscribed in a circle $O$. The tangent to $O$ at $E$ is parallel to $AD$. A point $F$ lies on $O$ and it is in the opposite side of $A$ with respect to $CD$, and satisfi es $AB \cdot BC \cdot DF = AE \cdot ED \cdot CF$ and $\angle CFD = 2\angle BFE$. Prove that the tangent to $O$ at $B,E$ and line $AF$ concur at one point.

Durer Math Competition CD Finals - geometry, 2015.C1

Can the touchpoints of the inscribed circle of a triangle with the triangle form an obtuse triangle?

2021 Francophone Mathematical Olympiad, 3

Let $ABCD$ be a square with incircle $\Gamma$. Let $M$ be the midpoint of the segment $[CD]$. Let $P \neq B$ be a point on the segment $[AB]$. Let $E \neq M$ be the point on $\Gamma$ such that $(DP)$ and $(EM)$ are parallel. The lines $(CP)$ and $(AD)$ meet each other at $F$. Prove that the line $(EF)$ is tangent to $\Gamma$

1999 Switzerland Team Selection Test, 1

Two circles intersect at points $M$ and $N$. Let $A$ be a point on the first circle, distinct from $M,N$. The lines $AM$ and $AN$ meet the second circle again at $B$ and $C$, respectively. Prove that the tangent to the first circle at $A$ is parallel to $BC$.

2001 German National Olympiad, 6 (12)

Let $ABC$ be a triangle with $\angle A = 90^o$ and $\angle B < \angle C$. The tangent at $A$ to the circumcircle $k$ of $\vartriangle ABC$ intersects line $BC$ at $D$. Let $E$ be the reflection of $A$ in $BC$. Also, let $X$ be the feet of the perpendicular from $A$ to $BE$ and let $Y$ be the midpoint of $AX$. Line $BY$ meets $k$ again at $Z$. Prove that line $BD$ is tangent to the circumcircle of $\vartriangle ADZ$.

2010 Balkan MO Shortlist, G8

Let $c(0, R)$ be a circle with diameter $AB$ and $C$ a point, on it different than $A$ and $B$ such that $\angle AOC > 90^o$. On the radius $OC$ we consider the point $K$ and the circle $(c_1)$ with center $K$ and radius $KC = R_1$. We draw the tangents $AD$ and $AE$ from $A$ to the circle $(c_1)$. Prove that the straight lines $AC, BK$ and $DE$ are concurrent

2012 Oral Moscow Geometry Olympiad, 3

Given an equilateral triangle $ABC$ and a straight line $\ell$, passing through its center. Intersection points of this line with sides $AB$ and $BC$ are reflected wrt to the midpoints of these sides respectively. Prove that the line passing through the resulting points, touches the inscribed circle triangle $ABC$.

2008 Postal Coaching, 5

Let $\omega$ be the semicircle on diameter $AB$. A line parallel to $AB$ intersects $\omega$ at $C$ and $D$ so that $B$ and $C$ lie on opposite sides of $AD$. The line through $C$ parallel to $AD$ meets $\omega$ again in $E$. Lines $BE$ and $CD$ meet in $F$ and the line through $F$ parallel to $AD$ meets $AB$ in $P$. Prove that $PC$ is tangent to $\omega$.

2020 Australian Maths Olympiad, 3

Let $ABC$ be a triangle with $\angle ACB=90^{\circ}$. Suppose that the tangent line at $C$ to the circle passing through $A,B,C$ intersects the line $AB$ at $D$. Let $E$ be the midpoint of $CD$ and let $F$ be a point on $EB$ such that $AF$ is parallel to $CD$. Prove that the lines $AB$ and $CF$ are perpendicular.

2017 All-Russian Olympiad, 2

Let $ABC$ be an acute angled isosceles triangle with $AB=AC$ and circumcentre $O$. Lines $BO$ and $CO$ intersect $AC, AB$ respectively at $B', C'$. A straight line $l$ is drawn through $C'$ parallel to $AC$. Prove that the line $l$ is tangent to the circumcircle of $\triangle B'OC$.

2010 Federal Competition For Advanced Students, P2, 3

On a circular billiard table a ball rebounds from the rails as if the rail was the tangent to the circle at the point of impact. A regular hexagon with its vertices on the circle is drawn on a circular billiard table. A (point-shaped) ball is placed somewhere on the circumference of the hexagon, but not on one of its edges. Describe a periodical track of this ball with exactly four points at the rails. With how many different directions of impact can the ball be brought onto such a track?

1994 All-Russian Olympiad, 3

Tags: tangent , geometry
Two circles $S_1$ and $S_2$ touch externally at $F$. their external common tangent touches $S_1$ at A and $S_2$ at $B$. A line, parallel to $AB$ and tangent to $S_2$ at $C$, intersects $S_1$ at $D$ and $E$. Prove that the common chord of the circumcircles of triangles $ABC$ and $BDE$ passes through point $F$. (A. Kalinin)

2003 Junior Tuymaada Olympiad, 7

Through the point $ K $ lying outside the circle $ \omega $, the tangents are drawn $ KB $ and $ KD $ to this circle ($ B $ and $ D $ are tangency points) and a line intersecting a circle at points $ A $ and $ C $. The bisector of angle $ ABC $ intersects the segment $ AC $ at the point $ E $ and circle $ \omega $ at $ F $. Prove that $ \angle FDE = 90^\circ $.

2022 German National Olympiad, 5

Let $ABC$ be an equilateral triangle with circumcircle $k$. A circle $q$ touches $k$ from outside in a point $D$, where the point $D$ on $k$ is chosen so that $D$ and $C$ lie on different sides of the line $AB$. We now draw tangent lines from $A,B$ and $C$ to the circle $q$ and denote the lengths of the respective tangent line segments by $a,b$ and $c$. Prove that $a+b=c$.

Ukrainian TYM Qualifying - geometry, II.18

Inside an acute angle is a circle. Investigate the possibility of constructing with only a compass and a ruler, a tangent to this circle that the point of contact will bisect the segment of the tangent that is cut off by the sides of the angle.

2015 Junior Balkan Team Selection Tests - Moldova, 3

Let $\Omega$ be the circle circumscribed to the triangle $ABC$. Tangents taken to the circle $\Omega$ at points $A$ and $B$ intersects at the point $P$ , and the perpendicular bisector of $ (BC)$ cuts line $AC$ at point $Q$. Prove that lines $BC$ and $PQ$ are parallel.

2018 Irish Math Olympiad, 5

Points $A, B$ and $P$ lie on the circumference of a circle $\Omega_1$ such that $\angle APB$ is an obtuse angle. Let $Q$ be the foot of the perpendicular from $P$ on $AB$. A second circle $\Omega_2$ is drawn with centre $P$ and radius $PQ$. The tangents from $A$ and $B$ to $\Omega_2$ intersect $\Omega_1$ at $F$ and $H$ respectively. Prove that $FH$ is tangent to $\Omega_2$.

2023 Sharygin Geometry Olympiad, 20

Let a point $D$ lie on the median $AM$ of a triangle $ABC$. The tangents to the circumcircle of triangle $BDC$ at points $B$ and $C$ meet at point $K$. Prove that $DD'$ is parallel to $AK$, where $D'$ is isogonally conjugated to $D$ with respect to $ABC$.

2010 Germany Team Selection Test, 2

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2014 Contests, 3

Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside triangle $SCT$ and \[ \angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}. \] Prove that line $BD$ is tangent to the circumcircle of triangle $TSH$.