Found problems: 844
1990 Tournament Of Towns, (260) 4
Let $ABCD$ be a trapezium with $AC = BC$. Let $H$ be the midpoint of the base $AB$ and let $\ell$ be a line passing through $H$. Let $\ell$ meet $AD$ at $P$ and $BD$ at $Q$. Prove that the angles $ACP$ and $QCB$ are either equal or have a sum of $180^o$.
(I. Sharygin, Moscow)
2023 Silk Road, 1
Let $ABCD$ be a trapezoid with $AD\parallel BC$. A point $M $ is chosen inside the trapezoid, and a point $N$ is chosen inside the triangle $BMC$ such that $AM\parallel CN$, $BM\parallel DN$. Prove that triangles $ABN$ and $CDM$ have equal areas.
Ukraine Correspondence MO - geometry, 2017.8
On the midline of the isosceles trapezoid $ABCD$ ($BC \parallel AD$) find the point $K$, for which the sum of the angles $\angle DAK + \angle BCK$ will be the smallest.
2018 Oral Moscow Geometry Olympiad, 2
The diagonals of the trapezoid $ABCD$ are perpendicular ($AD//BC, AD>BC$) . Point $M$ is the midpoint of the side of $AB$, the point $N$ is symmetric of the center of the circumscribed circle of the triangle $ABD$ wrt $AD$. Prove that $\angle CMN = 90^o$.
(A. Mudgal, India)
2007 Sharygin Geometry Olympiad, 2
Points $E$ and $F$ are chosen on the base side $AD$ and the lateral side $AB$ of an isosceles trapezoid $ABCD$, respectively. Quadrilateral $CDEF$ is an isosceles trapezoid as well. Prove that $AE \cdot ED = AF \cdot FB$.
2013 Princeton University Math Competition, 7
Given triangle $ABC$ and a point $P$ inside it, $\angle BAP=18^\circ$, $\angle CAP=30^\circ$, $\angle ACP=48^\circ$, and $AP=BC$. If $\angle BCP=x^\circ$, find $x$.
1951 Moscow Mathematical Olympiad, 191
Given an isosceles trapezoid $ABCD$ and a point $P$. Prove that a quadrilateral can be constructed from segments $PA, PB, PC, PD$.
Note: It is allowed that the vertices of a quadrilateral lie not only not only on the sides of the trapezoid, but also on their extensions.
2009 Today's Calculation Of Integral, 503
Prove the following inequality.
\[ \frac{2}{2\plus{}e^{\frac 12}}<\int_0^1 \frac{dx}{1\plus{}xe^{x}}<\frac{2\plus{}e}{2(1\plus{}e)}\]
2021 Indonesia TST, G
Given points $A$, $B$, $C$, and $D$ on circle $\omega$ such that lines $AB$ and $CD$ intersect on point $T$ where $A$ is between $B$ and $T$, moreover $D$ is between $C$ and $T$. It is known that the line passing through $D$ which is parallel to $AB$ intersects $\omega$ again on point $E$ and line $ET$ intersects $\omega$ again on point $F$. Let $CF$ and $AB$ intersect on point $G$, $X$ be the midpoint of segment $AB$, and $Y$ be the reflection of point $T$ to $G$.
Prove that $X$, $Y$, $C$, and $D$ are concyclic.
2011 AMC 10, 17
In the given circle, the diameter $\overline{EB}$ is parallel to $\overline{DC}$, and $\overline{AB}$ is parallel to $\overline{ED}$. The angles $AEB$ and $ABE$ are in the ratio $4:5$. What is the degree measure of angle $BCD$?
[asy]
unitsize(7mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
real r=3;
pair A=(-3cos(80),-3sin(80));
pair D=(3cos(80),3sin(80)), C=(-3cos(80),3sin(80));
pair O=(0,0), E=(-3,0), B=(3,0);
path outer=Circle(O,r);
draw(outer);
draw(E--B);
draw(E--A);
draw(B--A);
draw(E--D);
draw(C--D);
draw(B--C);
pair[] ps={A,B,C,D,E,O};
dot(ps);
label("$A$",A,N);
label("$B$",B,NE);
label("$C$",C,S);
label("$D$",D,S);
label("$E$",E,NW);
label("$$",O,N);[/asy]
$ \textbf{(A)}\ 120 \qquad
\textbf{(B)}\ 125 \qquad
\textbf{(C)}\ 130 \qquad
\textbf{(D)}\ 135 \qquad
\textbf{(E)}\ 140 $
Kyiv City MO 1984-93 - geometry, 1987.8.2
Construct a trapezoid given the midpoints of the legs, the point of intersection of the diagonals and the foot of the perpendicular, drawn from this point on the larger base.
2005 Bosnia and Herzegovina Junior BMO TST, 4
The sum of the angles on the bigger base of a trapezoid is $90^o$. Prove that the line segment whose ends are the midpoints of the bases, is equal to the line segment whose ends are the midpoints of the diagonals.
2016 Iranian Geometry Olympiad, 1
In trapezoid $ABCD$ with $AB || CD$, $\omega_1$ and $\omega_2$ are two circles with diameters $AD$ and $BC$, respectively. Let $X$ and $Y$ be two arbitrary points on $\omega_1$ and $\omega_2$, respectively. Show that the length of segment $XY$ is not more than half the perimeter of $ABCD$.
[i]Proposed by Mahdi Etesami Fard[/i]
2000 AIME Problems, 6
One base of a trapezoid is 100 units longer than the other base. The segment that joins the midpoints of the legs divides the trapezoid into two regions whose areas are in the ratio $2: 3.$ Let $x$ be the length of the segment joining the legs of the trapezoid that is parallel to the bases and that divides the trapezoid into two regions of equal area. Find the greatest integer that does not exceed $x^2/100.$
2023 Iranian Geometry Olympiad, 1
All of the polygons in the figure below are regular. Prove that $ABCD$ is an isosceles trapezoid.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/3f4de32becf4a90bf0f0b002fb4d8e724e8844.png[/img]
[i]Proposed by Mahdi Etesamifard - Iran[/i]
2014 Oral Moscow Geometry Olympiad, 1
In trapezoid $ABCD$: $BC <AD, AB = CD, K$ is midpoint of $AD, M$ is midpoint of $CD, CH$ is height. Prove that lines $AM, CK$ and $BH$ intersect at one point.
2018 Cyprus IMO TST, 2
Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$.
2010 Korea - Final Round, 4
Given is a trapezoid $ ABCD$ where $ AB$ and $ CD$ are parallel, and $ A,B,C,D$ are clockwise in this order. Let $ \Gamma_1$ be the circle with center $ A$ passing through $ B$, $ \Gamma_2$ be the circle with center $ C$ passing through $ D$. The intersection of line $ BD$ and $ \Gamma_1$ is $ P$ $ ( \ne B,D)$. Denote by $ \Gamma$ the circle with diameter $ PD$, and let $ \Gamma$ and $ \Gamma_1$ meet at $ X$$ ( \ne P)$. $ \Gamma$ and $ \Gamma_2$ meet at $ Y$. If the circumcircle of triangle $ XBY$ and $ \Gamma_2$ meet at $ Q$, prove that $ B,D,Q$ are collinear.
2000 IMO Shortlist, 1
In the plane we are given two circles intersecting at $ X$ and $ Y$. Prove that there exist four points with the following property:
(P) For every circle touching the two given circles at $ A$ and $ B$, and meeting the line $ XY$ at $ C$ and $ D$, each of the lines $ AC$, $ AD$, $ BC$, $ BD$ passes through one of these points.
2004 Federal Competition For Advanced Students, P2, 3
A trapezoid $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle $k$. Let $k_a$ and $k_c$ respectively be the circles with diameters $AB$ and $CD$. Compute the area of the region which is inside the circle $k$, but outside the circles $k_a$ and $k_c$.
2013 International Zhautykov Olympiad, 1
Given a trapezoid $ABCD$ ($AD \parallel BC$) with $\angle ABC > 90^\circ$ . Point $M$ is chosen on the lateral side $AB$. Let $O_1$ and $O_2$ be the circumcenters of the triangles $MAD$ and $MBC$, respectively. The circumcircles of the triangles $MO_1D$ and $MO_2C$ meet again at the point $N$. Prove that the line $O_1O_2$ passes through the point $N$.
1959 AMC 12/AHSME, 3
If the diagonals of a quadrilateral are perpendicular to each other, the figure would always be included under the general classification:
$ \textbf{(A)}\ \text{rhombus} \qquad\textbf{(B)}\ \text{rectangles} \qquad\textbf{(C)}\ \text{square} \qquad\textbf{(D)}\ \text{isosceles trapezoid}\qquad\textbf{(E)}\ \text{none of these} $
1984 Czech And Slovak Olympiad IIIA, 2
Let $\alpha, \beta, \gamma, \delta$ be the interior angles of a convex quadrilateral, If $$ \cos\alpha + \cos\beta + \cos\gamma, + \cos\delta = 0 , $$ then this quadrilateral is cyclic or a trapezium. Prove it.
2008 Brazil Team Selection Test, 4
The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
2009 Hong kong National Olympiad, 3
$ABC$ is a right triangle with $\angle C=90$,$CD$ is perpendicular to $AB$,and $D$ is the foot,$\omega$ is the circumcircle of triangle $BCD$,$\omega_{1}$ is a circle inside triangle $ACD$,tangent to $AD$ and $AC$ at $M$ and $N$ respectively,and $\omega_{1}$ is also tangent to $\omega$.prove that:
(1)$BD*CN+BC*DM=CD*BM$
(2)$BM=BC$