Found problems: 844
Ukraine Correspondence MO - geometry, 2004.8
The extensions of the sides $AB$ and $CD$ of the trapezoid $ABCD$ intersect at point $E$. Denote by $H$ and $G$ the midpoints of $BD$ and $AC$. Find the ratio of the area $AEGH$ to the area $ABCD$.
2008 AMC 12/AHSME, 25
Let $ ABCD$ be a trapezoid with $ AB\parallel{}CD$, $ AB\equal{}11$, $ BC\equal{}5$, $ CD\equal{}19$, and $ DA\equal{}7$. Bisectors of $ \angle A$ and $ \angle D$ meet at $ P$, and bisectors of $ \angle B$ and $ \angle C$ meet at $ Q$. What is the area of hexagon $ ABQCDP$?
$ \textbf{(A)}\ 28\sqrt{3}\qquad
\textbf{(B)}\ 30\sqrt{3}\qquad
\textbf{(C)}\ 32\sqrt{3}\qquad
\textbf{(D)}\ 35\sqrt{3}\qquad
\textbf{(E)}\ 36\sqrt{3}$
2002 Junior Balkan MO, 2
Two circles with centers $O_{1}$ and $O_{2}$ meet at two points $A$ and $B$ such that the centers of the circles are on opposite sides of the line $AB$. The lines $BO_{1}$ and $BO_{2}$ meet their respective circles again at $B_{1}$ and $B_{2}$. Let $M$ be the midpoint of $B_{1}B_{2}$. Let $M_{1}$, $M_{2}$ be points on the circles of centers $O_{1}$ and $O_{2}$ respectively, such that $\angle AO_{1}M_{1}= \angle AO_{2}M_{2}$, and $B_{1}$ lies on the minor arc $AM_{1}$ while $B$ lies on the minor arc $AM_{2}$. Show that $\angle MM_{1}B = \angle MM_{2}B$.
[i]Ciprus[/i]
2011 China Team Selection Test, 1
In $\triangle ABC$ we have $BC>CA>AB$. The nine point circle is tangent to the incircle, $A$-excircle, $B$-excircle and $C$-excircle at the points $T,T_A,T_B,T_C$ respectively. Prove that the segments $TT_B$ and lines $T_AT_C$ intersect each other.
2014 India National Olympiad, 1
In a triangle $ABC$, let $D$ be the point on the segment $BC$ such that $AB+BD=AC+CD$. Suppose that the points $B$, $C$ and the centroids of triangles $ABD$ and $ACD$ lie on a circle. Prove that $AB=AC$.
2005 AIME Problems, 8
Circles $C_1$ and $C_2$ are externally tangent, and they are both internally tangent to circle $C_3$. The radii of $C_1$ and $C_2$ are $4$ and $10$, respectively, and the centers of the three circles are all collinear. A chord of $C_3$ is also a common external tangent of $C_1$ and $C_2$. Given that the length of the chord is $\frac{m\sqrt{n}}{p}$ where $m,n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p$.
2009 Sharygin Geometry Olympiad, 10
Let $ ABC$ be an acute triangle, $ CC_1$ its bisector, $ O$ its circumcenter. The perpendicular from $ C$ to $ AB$ meets line $ OC_1$ in a point lying on the circumcircle of $ AOB$. Determine angle $ C$.
2002 National Olympiad First Round, 13
Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $|BC|+|AD| = 7$, $|AB| = 9$ and $|BC| = 14$. What is the ratio of the area of the triangle formed by $CD$, angle bisector of $\widehat{BCD}$ and angle bisector of $\widehat{CDA}$ over the area of the trapezoid?
$
\textbf{a)}\ \dfrac{9}{14}
\qquad\textbf{b)}\ \dfrac{5}{7}
\qquad\textbf{c)}\ \sqrt 2
\qquad\textbf{d)}\ \dfrac{49}{69}
\qquad\textbf{e)}\ \dfrac 13
$
1978 Romania Team Selection Test, 3
Let $ A_1,A_2,...,A_{3n} $ be $ 3n\ge 3 $ planar points such that $ A_1A_2A_3 $ is an equilateral triangle and $ A_{3k+1} ,A_{3k+2} ,A_{3k+3} $ are the midpoints of the sides of $ A_{3k-2}A_{3k-1}A_{3k} , $ for all $ 1\le k<n. $ Of two different colors, each one of these points are colored, either with one, either with another.
[b]a)[/b] Prove that, if $ n\ge 7, $ then some of these points form a monochromatic (only one color) isosceles trapezoid.
[b]b)[/b] What about $ n=6? $
2000 Belarusian National Olympiad, 4
The lateral sides and diagonals of a trapezoid intersect a line $l$, determining three equal segments on it. Must $l$ be parallel to the bases of the trapezoid?
2018 India PRMO, 5
Let $ABCD$ be a trapezium in which $AB //CD$ and $AD \perp AB$. Suppose $ABCD$ has an incircle which touches $AB$ at $Q$ and $CD$ at $P$. Given that $PC = 36$ and $QB = 49$, find $PQ$.
1998 AMC 12/AHSME, 8
A square $ ABCD$ with sides of length 1 is divided into two congruent trapezoids and a pentagon, which have equal areas, by joining the center of the square with points $ E,F,G$ where $ E$ is the midpoint of $ BC$, $ F,G$ are on $ AB$ and $ CD$, respectively, and they're positioned that $ AF < FB, DG < GC$ and $ F$ is the directly opposite of $ G$. If $ FB \equal{} x$, the length of the longer parallel side of each trapezoid, find the value of $ x$.
[asy]unitsize(2.5cm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
dotfactor=4;
pair[] dotted={(0,0),(0,1),(1,1),(1,0),(1/6,0),(1/6,1),(1/2,1/2),(1,1/2)};
draw(unitsquare);
draw((1/6,0)--(1/2,1/2)--(1/6,1));
draw((1/2,1/2)--(1,1/2));
dot(dotted);
label("$x$",midpoint((1/6,1)--(1,1)),N);[/asy]$ \displaystyle \textbf{(A)}\ \frac {3}{5} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {3}{4} \qquad \textbf{(D)}\ \frac {5}{6} \qquad \textbf{(E)}\ \frac {7}{8}$
2021 Hong Kong TST, 5
Let $ABCD$ be an isosceles trapezoid with base $BC$ and $AD$. Suppose $\angle BDC=10^{\circ}$ and $\angle BDA=70^{\circ}$. Show that $AD^2=BC(AD+AB)$.
2008 Irish Math Olympiad, 2
Circles $ S$ and $ T$ intersect at $ P$ and $ Q$, with $ S$ passing through the centre of $ T$. Distinct points $ A$ and $ B$ lie on $ S$, inside $ T$, and are equidistant from the centre of $ T$. The line $ PA$ meets $ T$ again at $ D$. Prove that $ |AD| \equal{} |PB|$.
2014 France Team Selection Test, 2
Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.
2007 ITAMO, 3
Let ABC be a triangle, G its centroid, M the midpoint of AB, D the point on the line $AG$ such that $AG = GD, A \neq D$, E the point on the line $BG$ such that $BG = GE, B \neq E$. Show that the quadrilateral BDCM is cyclic if and only if $AD = BE$.
2024 Iranian Geometry Olympiad, 5
Point $P$ is the intersection of diagonals $AC,BD$ of the trapezoid $ABCD$ with $AB \parallel CD$. Reflections of the lines $AD$ and $BC$ into the internal angle bisectors of $\angle PDC$ and $\angle PCD$ intersects the circumcircles of $\bigtriangleup APD$ and $\bigtriangleup BPC$ at $D'$ and $C'$. Line $C'A$ intersects the circumcircle of $\bigtriangleup BPC$ again at $Y$ and $D'C$ intersects the circumcricle of $\bigtriangleup APD$ again at $X$. Prove that $P,X,Y$ are collinear.
[i]Proposed by Iman Maghsoudi - Iran[/i]
2015 AIME Problems, 4
In an isosceles trapezoid, the parallel bases have lengths $\log3$ and $\log192$, and the altitude to these bases has length $\log16$. The perimeter of the trapezoid can be written in the form $\log2^p3^q$, where $p$ and $q$ are positive integers. Find $p+q$.
2007 Princeton University Math Competition, 1
Take the square with vertices $(0,0)$, $(1,0)$, $(0,1)$, and $(1,1)$. Choose a random point in this square and draw the line segment from it to $(0,0)$. Choose a second random point in this square and draw the line segment from it to $(1,0)$. What is the probability that the two line segments intersect?
2009 Italy TST, 2
Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.
2003 Baltic Way, 14
Equilateral triangles $AMB,BNC,CKA$ are constructed on the exterior of a triangle $ABC$. The perpendiculars from the midpoints of $MN, NK, KM$ to the respective lines $CA, AB, BC$ are constructed. Prove that these three perpendiculars pass through a single point.
2001 National Olympiad First Round, 5
Let $ABCD$ be a trapezoid such that $AB \parallel CD$, $|AB|<|CD|$, and $\text{Area}(ABC)=30$. Let the line through $B$ parallel to $AD$ meet $[AC]$ at $E$. If $|AE|:|EC|=3:2$, then what is the area of trapezoid $ABCD$?
$
\textbf{(A)}\ 45
\qquad\textbf{(B)}\ 60
\qquad\textbf{(C)}\ 72
\qquad\textbf{(D)}\ 80
\qquad\textbf{(E)}\ 90
$
2017 Czech-Polish-Slovak Junior Match, 4
Bolek draw a trapezoid $ABCD$ trapezoid ($AB // CD$) on the board, with its midsegment line $EF$ in it. Point intersection of his diagonal $AC, BD$ denote by $P,$ and his rectangular projection on line $AB$ denote by $Q$. Lolek, wanting to tease Bolek, blotted from the board everything except segments $EF$ and $PQ$. When Bolek saw it, wanted to complete the drawing and draw the original trapezoid, but did not know how to do it. Can you help Bolek?
2007 India IMO Training Camp, 1
Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic.
[i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]
1999 AMC 8, 14
In trapezoid $ABCD$ , the sides $AB$ and $CD$ are equal. The perimeter of $ABCD$ is
[asy]
draw((0,0)--(4,3)--(12,3)--(16,0)--cycle);
draw((4,3)--(4,0),dashed);
draw((3.2,0)--(3.2,.8)--(4,.8));
label("$A$",(0,0),SW);
label("$B$",(4,3),NW);
label("$C$",(12,3),NE);
label("$D$",(16,0),SE);
label("$8$",(8,3),N);
label("$16$",(8,0),S);
label("$3$",(4,1.5),E);[/asy]
$ \text{(A)}\ 27\qquad\text{(B)}\ 30\qquad\text{(C)}\ 32\qquad\text{(D)}\ 34\qquad\text{(E)}\ 48 $