This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 405

2019 Romania Team Selection Test, 2

The altitudes through the vertices $ A,B,C$ of an acute-angled triangle $ ABC$ meet the opposite sides at $ D,E, F,$ respectively. The line through $ D$ parallel to $ EF$ meets the lines $ AC$ and $ AB$ at $ Q$ and $ R,$ respectively. The line $ EF$ meets $ BC$ at $ P.$ Prove that the circumcircle of the triangle $ PQR$ passes through the midpoint of $ BC.$

1986 IMO Longlists, 14

Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.

2021 EGMO, 3

Tags: geometry , triangle
Let $ABC$ be a triangle with an obtuse angle at $A$. Let $E$ and $F$ be the intersections of the external bisector of angle $A$ with the altitudes of $ABC$ through $B$ and $C$ respectively. Let $M$ and $N$ be the points on the segments $EC$ and $FB$ respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points $E, F, N, M$ lie on a circle.

1990 IMO Longlists, 5

Given the condition that there exist exactly $1990$ triangles $ABC$ with integral side-lengths satisfying the following conditions: (i) $\angle ABC =\frac 12 \angle BAC;$ (ii) $AC = b.$ Find the minimal value of $b.$

2020 Thailand TST, 2

Tags: triangle , geometry
Let $P$ be a point inside triangle $ABC$. Let $AP$ meet $BC$ at $A_1$, let $BP$ meet $CA$ at $B_1$, and let $CP$ meet $AB$ at $C_1$. Let $A_2$ be the point such that $A_1$ is the midpoint of $PA_2$, let $B_2$ be the point such that $B_1$ is the midpoint of $PB_2$, and let $C_2$ be the point such that $C_1$ is the midpoint of $PC_2$. Prove that points $A_2, B_2$, and $C_2$ cannot all lie strictly inside the circumcircle of triangle $ABC$. (Australia)

1970 IMO Longlists, 58

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

1974 Yugoslav Team Selection Test, Problem 2

Given two directly congruent triangles $ABC$ and $A'B'C'$ in a plane, assume that the circles with centers $C$ and $C'$ and radii $CA$ and $C'A'$ intersect. Denote by $\mathcal M$ the transformation that maps $\triangle ABC$ to $\triangle A'B'C'$. Prove that $\mathcal M$ can be expressed as a composition of at most three rotations in the following way: The first rotation has the center in one of $A,B,C$ and maps $\triangle ABC$ to $\triangle A_1B_1C_1$; The second rotation has the center in one of $A_1,B_1,C_1$, and maps $\triangle A_1B_1C_1$ to $\triangle A_2B_2C_2$; The third rotation has the center in one of $A_2,B_2,C_2$ and maps $\triangle A_2B_2C_2$ to $\triangle A'B'C'$.

2017 Kyiv Mathematical Festival, 2

Tags: geometry , triangle
A triangle $ABC$ is given. Let $D$ be a point on the extension of the segment $AB$ beyond $A$ such that $AD=BC,$ and $E$ be a point on the extension of the segment $BC$ beyond $B$ such that $BE=AC.$ Prove that the circumcircle of the triangle $DEB$ passes through the incenter of the triangle $ABC.$

2025 6th Memorial "Aleksandar Blazhevski-Cane", P6

There are $n \ge 7$ points in the plane, no $3$ of which are collinear. At least $7$ pairs of points are joined by line segments. For every aforementioned line segment $s$, let $t(s)$ be the number of triangles for which the segment $s$ is a side. Prove that there exist different line segments $s_1, s_2, s_3,$ and $s_4$ such that \[t(s_1) = t(s_2) = t(s_3) = t(s_4)\] holds. Proposed by [i]Viktor Simjanoski[/i]

2000 Moldova National Olympiad, Problem 8

Tags: geometry , triangle
Points $D$ and $N$ on the sides $AB$ and $BC$ and points $E,M$ on the side $AC$ of an equilateral triangle $ABC$, respectively, with $E$ between $A$ and $M$, satisfy $AD+AE=CN+CM=BD+BN+EM$. Determine the angle between the lines $DM$ and $EN$.

1955 Moscow Mathematical Olympiad, 310

Let the inequality $$Aa(Bb + Cc) + Bb(Aa + Cc) + Cc(Aa + Bb) > \frac{ABc^2 + BCa^2 + CAb^2}{2}$$ with given $a > 0, b > 0, c > 0$ hold for all $A > 0, B > 0, C > 0$. Is it possible to construct a triangle with sides of lengths $a, b, c$?

2002 Croatia National Olympiad, Problem 3

Tags: geometry , triangle
If two triangles with side lengths $a,b,c$ and $a',b',c'$ and the corresponding angle $\alpha,\beta,\gamma$ and $\alpha',\beta',\gamma'$ satisfy $\alpha+\alpha'=\pi$ and $\beta=\beta'$, prove that $aa'=bb'+cc'$.

2023 Junior Balkan Team Selection Tests - Romania, P2

Tags: geometry , triangle
Let $ABC$ be an acute-angled triangle with $BC > AB$, such that the points $A$, $H$, $I$ and $C$ are concyclic (where $H$ is the orthocenter and $I$ is the incenter of triangle $ABC$). The line $AC$ intersects the circumcircle of triangle $BHC$ at point $T$, and the line $BC$ intersects the circumcircle of triangle $AHC$ at point $P$. If the lines $PT$ and $HI$ are parallel, determine the measures of the angles of triangle $ABC$.

2001 Grosman Memorial Mathematical Olympiad, 4

The lengths of the sides of triangle $ABC$ are $4,5,6$. For any point $D$ on one of the sides, draw the perpendiculars $DP, DQ$ on the other two sides. What is the minimum value of $PQ$?

2005 Slovenia National Olympiad, Problem 3

Tags: geometry , triangle
In an isosceles triangle $ABC$ with $AB = AC$, $D$ is the midpoint of $AC$ and $E$ is the projection of $D$ onto $BC$. Let $F$ be the midpoint of $DE$. Prove that the lines $BF$ and $AE$ are perpendicular if and only if the triangle $ABC$ is equilateral.

2001 IMO Shortlist, 2

Consider an acute-angled triangle $ABC$. Let $P$ be the foot of the altitude of triangle $ABC$ issuing from the vertex $A$, and let $O$ be the circumcenter of triangle $ABC$. Assume that $\angle C \geq \angle B+30^{\circ}$. Prove that $\angle A+\angle COP < 90^{\circ}$.

2004 Germany Team Selection Test, 2

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

1967 IMO Shortlist, 6

A line $l$ is drawn through the intersection point $H$ of altitudes of acute-angle triangles. Prove that symmetric images $l_a, l_b, l_c$ of $l$ with respect to the sides $BC,CA,AB$ have one point in common, which lies on the circumcircle of $ABC.$

2012 Polish MO Finals, 3

Triangle $ABC$ with $AB = AC$ is inscribed in circle $o$. Circles $o_1$ and $o_2$ are internally tangent to circle $o$ in points $P$ and $Q$, respectively, and they are tangent to segments $AB$ and $AC$, respectively, and they are disjoint with the interior of triangle $ABC$. Let $m$ be a line tangent to circles $o_1$ and $o_2$, such that points $P$ and $Q$ lie on the opposite side than point $A$. Line $m$ cuts segments $AB$ and $AC$ in points $K$ and $L$, respectively. Prove, that intersection point of lines $PK$ and $QL$ lies on bisector of angle $BAC$.

1992 Yugoslav Team Selection Test, Problem 1

Tags: geometry , triangle
Three squares $BCDE,CAFG$ and $ABHI$ are constructed outside the triangle $ABC$. Let $GCDQ$ and $EBHP$ be parallelograms. Prove that $APQ$ is an isosceles right triangle.

2018 Tuymaada Olympiad, 3

A point $P$ on the side $AB$ of a triangle $ABC$ and points $S$ and $T$ on the sides $AC$ and $BC$ are such that $AP=AS$ and $BP=BT$. The circumcircle of $PST$ meets the sides $AB$ and $BC$ again at $Q$ and $R$, respectively. The lines $PS$ and $QR$ meet at $L$. Prove that the line $CL$ bisects the segment $PQ$. [i]Proposed by A. Antropov[/i]

2016 Peru IMO TST, 5

Tags: geometry , triangle
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2008 Chile National Olympiad, 2

Let $ABC$ be right isosceles triangle with right angle in $A$. Given a point $P$ inside the triangle, denote by $a, b$ and $c$ the lengths of $PA, PB$ and $PC$, respectively. Prove that there is a triangle whose sides have a length of $a\sqrt2 , b$ and $c$.

1987 Bulgaria National Olympiad, Problem 6

Let $\Delta$ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than $45^\circ,90^\circ$ and $135^\circ$. For each triangle $T\in\Delta$, $f(T)$ denotes the triangle with vertices at the second intersection points of the altitudes of $T$ with the circle. (a) Prove that there exists a natural number $n$ such that for every triangle $T\in\Delta$, among the triangles $T,f(T),\ldots,f^n(T)$ (where $f^0(T)=T$ and $f^k(T)=f(f^{k-1}(T))$) at least two are equal. (b) Find the smallest $n$ with the property from (a).

1984 IMO Longlists, 32

Angles of a given triangle $ABC$ are all smaller than $120^\circ$. Equilateral triangles $AFB, BDC$ and $CEA$ are constructed in the exterior of $ABC$. (a) Prove that the lines $AD, BE$, and $CF$ pass through one point $S.$ (b) Prove that $SD + SE + SF = 2(SA + SB + SC).$