This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 405

2015 ISI Entrance Examination, 7

Let $\gamma_1, \gamma_2,\gamma_3 $ be three circles of unit radius which touch each other externally. The common tangent to each pair of circles are drawn (and extended so that they intersect) and let the triangle formed by the common tangents be $\triangle XYZ$ . Find the length of each side of $\triangle XYZ$

2010 Belarus Team Selection Test, 4.2

Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$. [i]Proposed by Hossein Karke Abadi, Iran[/i]

1992 IMO Shortlist, 11

In a triangle $ ABC,$ let $ D$ and $ E$ be the intersections of the bisectors of $ \angle ABC$ and $ \angle ACB$ with the sides $ AC,AB,$ respectively. Determine the angles $ \angle A,\angle B, \angle C$ if $ \angle BDE \equal{} 24 ^{\circ},$ $ \angle CED \equal{} 18 ^{\circ}.$

1991 IMO, 2

Let $ \,ABC\,$ be a triangle and $ \,P\,$ an interior point of $ \,ABC\,$. Show that at least one of the angles $ \,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $ 30^{\circ }$.

2004 IMO Shortlist, 3

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

1985 IMO Longlists, 94

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.

1999 IMO Shortlist, 8

Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

2021 Balkan MO Shortlist, N7

A [i]super-integer[/i] triangle is defined to be a triangle whose lengths of all sides and at least one height are positive integers. We will deem certain positive integer numbers to be [i]good[/i] with the condition that if the lengths of two sides of a super-integer triangle are two (not necessarily different) good numbers, then the length of the remaining side is also a good number. Let $5$ be a good number. Prove that all integers larger than $2$ are good numbers.

2005 Moldova Team Selection Test, 2

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

1980 IMO Longlists, 8

Three points $A,B,C$ are such that $B \in ]AC[$. On the side of $AC$ we draw the three semicircles with diameters $[AB], [BC]$ and $[AC]$. The common interior tangent at $B$ to the first two semi-circles meets the third circle in $E$. Let $U$ and $V$ be the points of contact of the common exterior tangent to the first two semi-circles. Denote the area of the triangle $ABC$ as $S(ABC)$. Evaluate the ratio $R=\frac{S(EUV)}{S(EAC)}$ as a function of $r_1 = \frac{AB}{2}$ and $r_2 = \frac{BC}{2}$.

2016 Indonesia TST, 1

Tags: geometry , triangle
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2021 EGMO, 3

Tags: triangle , geometry
Let $ABC$ be a triangle with an obtuse angle at $A$. Let $E$ and $F$ be the intersections of the external bisector of angle $A$ with the altitudes of $ABC$ through $B$ and $C$ respectively. Let $M$ and $N$ be the points on the segments $EC$ and $FB$ respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points $E, F, N, M$ lie on a circle.

2020 Adygea Teachers' Geometry Olympiad, 3

Is it true that of the four heights of an arbitrary tetrahedron, three can be selected from which a triangle can be made?

2008 Germany Team Selection Test, 2

Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear. [i]Author: Waldemar Pompe, Poland[/i]

1985 IMO, 5

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.

2002 Germany Team Selection Test, 2

Let $A_1$ be the center of the square inscribed in acute triangle $ABC$ with two vertices of the square on side $BC$. Thus one of the two remaining vertices of the square is on side $AB$ and the other is on $AC$. Points $B_1,\ C_1$ are defined in a similar way for inscribed squares with two vertices on sides $AC$ and $AB$, respectively. Prove that lines $AA_1,\ BB_1,\ CC_1$ are concurrent.

1979 Bulgaria National Olympiad, Problem 5

A convex pentagon $ABCDE$ satisfies $AB=BC=CA$ and $CD=DE=EC$. Let $S$ be the center of the equilateral triangle $ABC$ and $M$ and $N$ be the midpoints of $BD$ and $AE$, respectively. Prove that the triangles $SME$ and $SND$ are similar.

1983 IMO Shortlist, 4

On the sides of the triangle $ABC$, three similar isosceles triangles $ABP \ (AP = PB)$, $AQC \ (AQ = QC)$, and $BRC \ (BR = RC)$ are constructed. The first two are constructed externally to the triangle $ABC$, but the third is placed in the same half-plane determined by the line $BC$ as the triangle $ABC$. Prove that $APRQ$ is a parallelogram.

1997 IMO Shortlist, 5

Let $ ABCD$ be a regular tetrahedron and $ M,N$ distinct points in the planes $ ABC$ and $ ADC$ respectively. Show that the segments $ MN,BN,MD$ are the sides of a triangle.

1977 Yugoslav Team Selection Test, Problem 3

Tags: triangle , geometry
Assume that the equality $2BC=AB+AC$ holds in $\triangle ABC$. Prove that: (a) The vertex $A$, the midpoints $M$ and $N$ of $AB$ and $AC$ respectively, the incenter $I$, and the circumcenter $O$ belong to a circle $k$. (b) The line $GI$, where $G$ is the centroid of $\triangle ABC$ is a tangent to $k$.

2004 Germany Team Selection Test, 3

Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that \[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \] [i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$. Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$. [i]Proposed by Dirk Laurie, South Africa[/i]

1982 IMO Shortlist, 9

Let $ABC$ be a triangle, and let $P$ be a point inside it such that $\angle PAC = \angle PBC$. The perpendiculars from $P$ to $BC$ and $CA$ meet these lines at $L$ and $M$, respectively, and $D$ is the midpoint of $AB$. Prove that $DL = DM.$

2018 Tuymaada Olympiad, 3

A point $P$ on the side $AB$ of a triangle $ABC$ and points $S$ and $T$ on the sides $AC$ and $BC$ are such that $AP=AS$ and $BP=BT$. The circumcircle of $PST$ meets the sides $AB$ and $BC$ again at $Q$ and $R$, respectively. The lines $PS$ and $QR$ meet at $L$. Prove that the line $CL$ bisects the segment $PQ$. [i]Proposed by A. Antropov[/i]

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

1992 IMO Longlists, 42

In a triangle $ ABC,$ let $ D$ and $ E$ be the intersections of the bisectors of $ \angle ABC$ and $ \angle ACB$ with the sides $ AC,AB,$ respectively. Determine the angles $ \angle A,\angle B, \angle C$ if $ \angle BDE \equal{} 24 ^{\circ},$ $ \angle CED \equal{} 18 ^{\circ}.$