This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

1997 Slovenia Team Selection Test, 4

Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that $A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.

2012 Today's Calculation Of Integral, 819

For real numbers $a,\ b$ with $0\leq a\leq \pi,\ a<b$, let $I(a,\ b)=\int_{a}^{b} e^{-x} \sin x\ dx.$ Determine the value of $a$ such that $\lim_{b\rightarrow \infty} I(a,\ b)=0.$

1996 USAMO, 1

Prove that the average of the numbers $n \sin n^{\circ} \; (n = 2,4,6,\ldots,180)$ is $\cot 1^{\circ}$.

1996 IMC, 8

Tags: trigonometry
Let $\theta$ be a positive real number. Show that if $k\in \mathbb{N}$ and both $\cosh k \theta$ and $\cosh(k+1) \theta$ are rational, then so is $\cosh \theta$.

2010 Peru IMO TST, 6

Let the sides $AD$ and $BC$ of the quadrilateral $ABCD$ (such that $AB$ is not parallel to $CD$) intersect at point $P$. Points $O_1$ and $O_2$ are circumcenters and points $H_1$ and $H_2$ are orthocenters of triangles $ABP$ and $CDP$, respectively. Denote the midpoints of segments $O_1H_1$ and $O_2H_2$ by $E_1$ and $E_2$, respectively. Prove that the perpendicular from $E_1$ on $CD$, the perpendicular from $E_2$ on $AB$ and the lines $H_1H_2$ are concurrent. [i]Proposed by Eugene Bilopitov, Ukraine[/i]

2020 Taiwan APMO Preliminary, P1

Let $\triangle ABC$ satisfies $\cos A:\cos B:\cos C=1:1:2$, then $\sin A=\sqrt[s]{t}$($s\in\mathbb{N},t\in\mathbb{Q^+}$ and $t$ is an irreducible fraction). Find $s+t$.

2012 National Olympiad First Round, 25

The midpoint $M$ of $[AC]$ of a triangle $\triangle ABC$ is between $C$ and the feet $H$ of the altitude from $B$. If $m(\widehat{ABH}) = m(\widehat{MBC})$, $m(\widehat{ACB}) = 15^{\circ}$, and $|HM|=2\sqrt{3}$, then $|AC|=?$ $ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 5 \sqrt 2 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ \frac{16}{\sqrt3} \qquad \textbf{(E)}\ 10$

2001 China Team Selection Test, 2

Let $\theta_i \in \left ( 0,\frac{\pi}{4} \right ]$ for $i=1,2,3,4$. Prove that: $\tan \theta _1 \tan \theta _2 \tan \theta _3 \tan \theta _4 \le (\frac{\sin^8 \theta _1+\sin^8 \theta _2+\sin^8 \theta _3+\sin^8 \theta _4}{\cos^8 \theta _1+\cos^8 \theta _2+\cos^8 \theta _3+\cos^8 \theta _4})^\frac{1}{2}$ [hide=edit]@below, fixed now. There were some problems (weird characters) so aops couldn't send it.[/hide]

1969 Yugoslav Team Selection Test, Problem 5

Prove that the product of the sines of two opposite dihedrals in a tetrahedron is proportional to the product of the lengths of the edges of these dihedrals.

2010 Korea National Olympiad, 3

Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.

1982 Canada National Olympiad, 3

Let $\mathbb{R}^n$ be the $n$-dimensional Euclidean space. Determine the smallest number $g(n)$ of a points of a set in $\mathbb{R}^n$ such that every point in $\mathbb{R}^n$ is an irrational distance from at least one point in that set.

2013 Today's Calculation Of Integral, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2011 Today's Calculation Of Integral, 766

Let $f(x)$ be a continuous function defined on $0\leq x\leq \pi$ and satisfies $f(0)=1$ and \[\left\{\int_0^{\pi} (\sin x+\cos x)f(x)dx\right\}^2=\pi \int_0^{\pi}\{f(x)\}^2dx.\] Evaluate $\int_0^{\pi} \{f(x)\}^3dx.$

1987 IMO Longlists, 76

Given two sequences of positive numbers $\{a_k\}$ and $\{b_k\} \ (k \in \mathbb N)$ such that: [b](i)[/b] $a_k < b_k,$ [b](ii) [/b] $\cos a_kx + \cos b_kx \geq -\frac 1k $ for all $k \in \mathbb N$ and $x \in \mathbb R,$ prove the existence of $\lim_{k \to \infty} \frac{a_k}{b_k}$ and find this limit.

2009 Romanian Masters In Mathematics, 4

For a finite set $ X$ of positive integers, let $ \Sigma(X) \equal{} \sum_{x \in X} \arctan \frac{1}{x}.$ Given a finite set $ S$ of positive integers for which $ \Sigma(S) < \frac{\pi}{2},$ show that there exists at least one finite set $ T$ of positive integers for which $ S \subset T$ and $ \Sigma(S) \equal{} \frac{\pi}{2}.$ [i]Kevin Buzzard, United Kingdom[/i]

1999 AIME Problems, 15

Consider the paper triangle whose vertices are $(0,0), (34,0),$ and $(16,24).$ The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?

2001 Saint Petersburg Mathematical Olympiad, 11.1

Do there exist distinct numbers $x,y,z$ from $[0,\dfrac{\pi}{2}]$, such that six number $\sin x$, $\sin y$,$\sin z$, $\cos x$, $\cos y$, $\cos z$ could be partitioned into 3 pairs with equal sums? [I]Proposed by A. Golovanov[/i]

2008 ITest, 57

Let $a$ and $b$ be the two possible values of $\tan\theta$ given that \[\sin\theta + \cos\theta = \dfrac{193}{137}.\] If $a+b=m/n$, where $m$ and $n$ are relatively prime positive integers, compute $m+n$.

1959 IMO, 4

Construct a right triangle with given hypotenuse $c$ such that the median drawn to the hypotenuse is the geometric mean of the two legs of the triangle.

2011 AMC 12/AHSME, 24

Consider all quadrilaterals $ABCD$ such that $AB=14$, $BC=9$, $CD=7$, $DA=12$. What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral? $ \textbf{(A)}\ \sqrt{15} \qquad\textbf{(B)}\ \sqrt{21} \qquad\textbf{(C)}\ 2\sqrt{6} \qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 2\sqrt{7} $

2011 Brazil National Olympiad, 3

Prove that, for all convex pentagons $P_1 P_2 P_3 P_4 P_5$ with area 1, there are indices $i$ and $j$ (assume $P_7 = P_2$ and $P_6 = P_1$) such that: \[ \text{Area of} \ \triangle P_i P_{i+1} P_{i+2} \le \frac{5 - \sqrt 5}{10} \le \text{Area of} \ \triangle P_j P_{j+1} P_{j+2}\]

2011 JBMO Shortlist, 6

Let $ABCD$ be a convex quadrilateral and points $E$ and $F$ on sides $AB,CD$ such that \[\tfrac{AB}{AE}=\tfrac{CD}{DF}=n\] If $S$ is the area of $AEFD$ show that ${S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}}$

2001 National Olympiad First Round, 29

Let $ABCD$ be a isosceles trapezoid such that $AB || CD$ and all of its sides are tangent to a circle. $[AD]$ touches this circle at $N$. $NC$ and $NB$ meet the circle again at $K$ and $L$, respectively. What is $\dfrac {|BN|}{|BL|} + \dfrac {|CN|}{|CK|}$? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ 10 $

2006 Princeton University Math Competition, 3

Find the exact value of $\sin 36^o$.

2006 Princeton University Math Competition, 5

$A, B$, and $C$ are vertices of a triangle, and $P$ is a point within the triangle. If angles $\angle BAP$, $\angle BCP$, and $\angle ABP$ are all $30^o$ and angle $\angle ACP$ is $45^o$, what is $\sin(\angle CBP)$?