This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3349

2014 USAMTS Problems, 2:

Let $A_1A_2A_3A_4A_5$ be a regular pentagon with side length 1. The sides of the pentagon are extended to form the 10-sided polygon shown in bold at right. Find the ratio of the area of quadrilateral $A_2A_5B_2B_5$ (shaded in the picture to the right) to the area of the entire 10-sided polygon. [asy] size(8cm); defaultpen(fontsize(10pt)); pair A_2=(-0.4382971011,5.15554989475), B_4=(-2.1182971011,-0.0149584477027), B_5=(-4.8365942022,8.3510997895), A_3=(0.6,8.3510997895), B_1=(2.28,13.521608132), A_4=(3.96,8.3510997895), B_2=(9.3965942022,8.3510997895), A_5=(4.9982971011,5.15554989475), B_3=(6.6782971011,-0.0149584477027), A_1=(2.28,3.18059144705); filldraw(A_2--A_5--B_2--B_5--cycle,rgb(.8,.8,.8)); draw(B_1--A_4^^A_4--B_2^^B_2--A_5^^A_5--B_3^^B_3--A_1^^A_1--B_4^^B_4--A_2^^A_2--B_5^^B_5--A_3^^A_3--B_1,linewidth(1.2)); draw(A_1--A_2--A_3--A_4--A_5--cycle); pair O = (A_1+A_2+A_3+A_4+A_5)/5; label("$A_1$",A_1, 2dir(A_1-O)); label("$A_2$",A_2, 2dir(A_2-O)); label("$A_3$",A_3, 2dir(A_3-O)); label("$A_4$",A_4, 2dir(A_4-O)); label("$A_5$",A_5, 2dir(A_5-O)); label("$B_1$",B_1, 2dir(B_1-O)); label("$B_2$",B_2, 2dir(B_2-O)); label("$B_3$",B_3, 2dir(B_3-O)); label("$B_4$",B_4, 2dir(B_4-O)); label("$B_5$",B_5, 2dir(B_5-O)); [/asy]

2001 South africa National Olympiad, 2

Find all triples $(x,y,z)$ of real numbers that satisfy \[ \begin{aligned} & x\left(1 - y^2\right)\left(1 - z^2\right) + y\left(1 - z^2\right)\left(1 - x^2\right) + z\left(1 - x^2\right)\left(1 - y^2\right) \\ & = 4xyz \\ & = 4(x + y + z). \end{aligned} \]

2007 Hong Kong TST, 2

[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=107262]IMO 2007 HKTST 1[/url] Problem 2 Let $A$, $B$ and $C$ be real numbers such that (i) $\sin A \cos B+|\cos A \sin B|=\sin A |\cos A|+|\sin B|\cos B$, (ii) $\tan C$ and $\cot C$ are defined. Find the minimum value of $(\tan C-\sin A)^{2}+(\cot C-\cos B)^{2}$.

2012 ELMO Shortlist, 5

Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. [i]Calvin Deng.[/i]

2007 Moldova Team Selection Test, 2

If $I$ is the incenter of a triangle $ABC$ and $R$ is the radius of its circumcircle then \[AI+BI+CI\leq 3R\]

1982 IMO Longlists, 30

Let $ABC$ be a triangle, and let $P$ be a point inside it such that $\angle PAC = \angle PBC$. The perpendiculars from $P$ to $BC$ and $CA$ meet these lines at $L$ and $M$, respectively, and $D$ is the midpoint of $AB$. Prove that $DL = DM.$

2008 Germany Team Selection Test, 2

For three points $ X,Y,Z$ let $ R_{XYZ}$ be the circumcircle radius of the triangle $ XYZ.$ If $ ABC$ is a triangle with incircle centre $ I$ then we have: \[ \frac{1}{R_{ABI}} \plus{} \frac{1}{R_{BCI}} \plus{} \frac{1}{R_{CAI}} \leq \frac{1}{\bar{AI}} \plus{} \frac{1}{\bar{BI}} \plus{} \frac{1}{\bar{CI}}.\]

2013 F = Ma, 25

Tags: trigonometry
A box with weight $W$ will slide down a $30^\circ$ incline at constant speed under the influence of gravity and friction alone. If instead a horizontal force $P$ is applied to the box, the box can be made to move up the ramp at constant speed. What is the magnitude of $P$? $\textbf{(A) } P = W/2 \\ \textbf{(B) } P = 2W/\sqrt{3}\\ \textbf{(C) } P = W\\ \textbf{(D) } P = \sqrt{3}W \\ \textbf{(E) } P = 2W$

2009 Today's Calculation Of Integral, 424

Let $ n$ be positive integer. For $ n \equal{} 1,\ 2,\ 3,\ \cdots n$, let denote $ S_k$ be the area of $ \triangle{AOB_k}$ such that $ \angle{AOB_k} \equal{} \frac {k}{2n}\pi ,\ OA \equal{} 1,\ OB_k \equal{} k$. Find the limit $ \lim_{n\to\infty}\frac {1}{n^2}\sum_{k \equal{} 1}^n S_k$.

1982 IMO Longlists, 35

If the inradius of a triangle is half of its circumradius, prove that the triangle is equilateral.

1999 AIME Problems, 14

Point $P$ is located inside traingle $ABC$ so that angles $PAB, PBC,$ and $PCA$ are all congruent. The sides of the triangle have lengths $AB=13, BC=14,$ and $CA=15,$ and the tangent of angle $PAB$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2002 AMC 12/AHSME, 23

In $ \triangle{ABC}$, we have $ AB\equal{}1$ and $ AC\equal{}2$. Side $ BC$ and the median from $ A$ to $ BC$ have the same length. What is $ BC$? $ \textbf{(A)}\ \frac{1\plus{}\sqrt2}{2} \qquad \textbf{(B)}\ \frac{1\plus{}\sqrt3}{2} \qquad \textbf{(C)}\ \sqrt2 \qquad \textbf{(D)}\ \frac{3}{2} \qquad \textbf{(E)}\ \sqrt3$

1999 Belarusian National Olympiad, 1

Evaluate the product $\prod_{k=0}^{2^{1999}}(4\sin^2 \frac{k\pi}{2^{2000}}-3)$

1989 IMO Longlists, 73

We are given a finite collection of segments in the plane, of total length 1. Prove that there exists a line $ l$ such that the sum of the lengths of the projections of the given segments to the line $ l$ is less than $ \frac{2}{\pi}.$

2008 JBMO Shortlist, 3

The vertices $ A$ and $ B$ of an equilateral triangle $ ABC$ lie on a circle $k$ of radius $1$, and the vertex $ C$ is in the interior of the circle $ k$. A point $ D$, different from $ B$, lies on $ k$ so that $ AD\equal{}AB$. The line $ DC$ intersects $ k$ for the second time at point $ E$. Find the length of the line segment $ CE$.

2003 Bundeswettbewerb Mathematik, 3

Let $ABCD$ be a parallelogram. Let $M$ be a point on the side $AB$ and $N$ be a point on the side $BC$ such that the segments $AM$ and $CN$ have equal lengths and are non-zero. The lines $AN$ and $CM$ meet at $Q$. Prove that the line $DQ$ is the bisector of the angle $\measuredangle ADC$. [i]Alternative formulation.[/i] Let $ABCD$ be a parallelogram. Let $M$ and $N$ be points on the sides $AB$ and $BC$, respectively, such that $AM=CN\neq 0$. The lines $AN$ and $CM$ intersect at a point $Q$. Prove that the point $Q$ lies on the bisector of the angle $\measuredangle ADC$.

1950 Moscow Mathematical Olympiad, 178

Let $A$ be an arbitrary angle,let $B$ and $C$ be acute angles. Is there an angle $x$ such that $$\sin x =\frac{\sin B \cdot \sin C}{1 - \cos B \cdot \cos C \cdot \cos A} ?$$

Indonesia Regional MO OSP SMA - geometry, 2012.4

Given an acute triangle $ABC$. Point $H$ denotes the foot of the altitude drawn from $A$. Prove that $$AB + AC \ge BC cos \angle BAC + 2AH sin \angle BAC$$

2011 NIMO Summer Contest, 13

For real $\theta_i$, $i = 1, 2, \dots, 2011$, where $\theta_1 = \theta_{2012}$, find the maximum value of the expression \[ \sum_{i=1}^{2011} \sin^{2012} \theta_i \cos^{2012} \theta_{i+1}. \] [i]Proposed by Lewis Chen [/i]

2011 Today's Calculation Of Integral, 748

Evaluate the following integrals. (1) $\int_0^{\pi} \cos mx\cos nx\ dx\ (m,\ n=1,\ 2,\ \cdots).$ (2) $\int_1^3 \left(x-\frac{1}{x}\right)(\ln x)^2dx.$

1984 IMO Longlists, 63

Inside triangle $ABC$ there are three circles $k_1, k_2, k_3$ each of which is tangent to two sides of the triangle and to its incircle $k$. The radii of $k_1, k_2, k_3$ are $1, 4$, and $9$. Determine the radius of $k.$

2011 All-Russian Olympiad Regional Round, 11.1

Is there a real number $\alpha$ such that $\cos\alpha$ is irrational but $\cos 2\alpha$, $\cos 3\alpha$, $\cos 4\alpha$, $\cos 5\alpha$ are all rational? (Author: V. Senderov)

VMEO I 2004, 7

Calculate the following $$P=(4\sin^2{0} -3)(4\sin^2\frac{\pi}{2^{2005}} -3)(4\sin^2\frac{2\pi}{2^{2005}} -3)(4\sin^2\frac{3\pi}{2^{2005}} -3)...$$ $$...\,\,\,\,(4\sin^2\frac{(2^{2004}-1)\pi}{2^{2005}} -3)(4\sin^2\frac{\pi}{2} -3)$$

2014 India Regional Mathematical Olympiad, 3

Let $ABC$ be an acute-angled triangle in which $\angle ABC$ is the largest angle. Let $O$ be its circumcentre. The perpendicular bisectors of $BC$ and $AB$ meet $AC$ at $X$ and $Y$ respectively. The internal angle bisectors of $\angle AXB$ and $\angle BYC$ meet $AB$ and $BC$ at $D$ and $E$ respectively. Prove that $BO$ is perpendicular to $AC$ if $DE$ is parallel to $AC$.

2014 AMC 12/AHSME, 10

Three congruent isosceles triangles are constructed with their bases on the sides of an equilateral triangle of side length $1$. The sum of the areas of the three isosceles triangles is the same as the area of the equilateral triangle. What is the length of one of the two congruent sides of one of the isosceles triangles? $\textbf{(A) }\dfrac{\sqrt3}4\qquad \textbf{(B) }\dfrac{\sqrt3}3\qquad \textbf{(C) }\dfrac23\qquad \textbf{(D) }\dfrac{\sqrt2}2\qquad \textbf{(E) }\dfrac{\sqrt3}2$