This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2005 Pan African, 2

Let $S$ be a set of integers with the property that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. If $0$ and $1000$ are elements of $S$, prove that $-2$ is also an element of $S$.

2006 China Team Selection Test, 3

Tags: geometry
$\triangle{ABC}$ can cover a convex polygon $M$.Prove that there exsit a triangle which is congruent to $\triangle{ABC}$ such that it can also cover $M$ and has one side line paralel to or superpose one side line of $M$.

2011 Tournament of Towns, 7

Among a group of programmers, every two either know each other or do not know each other. Eleven of them are geniuses. Two companies hire them one at a time, alternately, and may not hire someone already hired by the other company. There are no conditions on which programmer a company may hire in the fi rst round. Thereafter, a company may only hire a programmer who knows another programmer already hired by that company. Is it possible for the company which hires second to hire ten of the geniuses, no matter what the hiring strategy of the other company may be?

2024 Iran MO (3rd Round), 3

The prime number $p$ and a positive integer $k$ are given. Assume that $P(x)\in \mathbb Z[X]$ is a polynomial with coefficients in the set $\{0,1,\cdots,p-1\}$ with least degree which satisfies the following property: There exists a permutaion of numbers $1,2,\cdots,p-1$ around a circle such that for any $k$ consecutive numbers $a_1,a_2,\cdots,a_k$ one has $$ p | P(a_1)+P(a_2)+\cdots+ P(a_k). $$ Prove that $P(x)$ is of the form $ax^d+b$. Proposed by [i]Yahya Motevassel[/i]

2014 Harvard-MIT Mathematics Tournament, 6

We have a calculator with two buttons that displays and integer $x$. Pressing the first button replaces $x$ by $\lfloor \frac{x}{2} \rfloor$, and pressing the second button replaces $x$ by $4x+1$. Initially, the calculator displays $0$. How many integers less than or equal to $2014$ can be achieved through a sequence of arbitrary button presses? (It is permitted for the number displayed to exceed 2014 during the sequence. Here, $\lfloor y \rfloor$ denotes the greatest integer less than or equal to the real number $y$).

V Soros Olympiad 1998 - 99 (Russia), 11.10

Consider a circle tangent to sides $AB$ and $AC$ (these sides are not equal) of triangle $ABC$ and the circumscribed circle around it. Let $K$, $M$ and $P$ be the touchpoints of this circle with the sides of the triangle and with the circle circumscribed around it, respectively, and let $L$ be the midpoint of the arc $BC$ (not containing $A$). Prove that the lines $KM$, $PL$ and $BC$ intersect at one point.

2012 German National Olympiad, 4

Let $a,b$ be positive real numbers and $n\geq 2$ a positive integer. Prove that if $x^n \leq ax+b$ holds for a positive real number $x$, then it also satisfies the inequality $x < \sqrt[n-1]{2a} + \sqrt[n]{2b}.$

1971 Czech and Slovak Olympiad III A, 6

Let a tetrahedron $ABCD$ and its inner point $O$ be given. For any edge $e$ of $ABCD$ consider the segment $f(e)$ containing $O$ such that $f(e)\parallel e$ and the endpoints of $f(e)$ lie on the faces of the tetrahedron. Show that \[\sum_{e\text{ edge}}\,\frac{\,f(e)\,}{e}=3.\]

2010 F = Ma, 17

Tags:
Four masses $m$ are arranged at the vertices of a tetrahedron of side length $a$. What is the gravitational potential energy of this arrangement? (A) $-2\frac{Gm^2}{a}$ (B) $-3\frac{Gm^2}{a}$ (C) $-4\frac{Gm^2}{a}$ (D) $-6\frac{Gm^2}{a}$ (E) $-12\frac{Gm^2}{a}$

2023 Puerto Rico Team Selection Test, 3

You have a list of $2023$ numbers, where each one can be $-1$, $0$, $1$ or $2$. The sum of all numbers is $19$ and the sum of their squares is $99$. What are the minimum and maximum values of the sum of the cubes of those $2023$ numbers?

1995 IMO Shortlist, 8

Let $ p$ be an odd prime. Determine positive integers $ x$ and $ y$ for which $ x \leq y$ and $ \sqrt{2p} \minus{} \sqrt{x} \minus{} \sqrt{y}$ is non-negative and as small as possible.

2000 Saint Petersburg Mathematical Olympiad, 11.6

What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them. [I]Proposed by D. Karpov[/i]

1975 IMO Shortlist, 10

Determine the polynomials P of two variables so that: [b]a.)[/b] for any real numbers $t,x,y$ we have $P(tx,ty) = t^n P(x,y)$ where $n$ is a positive integer, the same for all $t,x,y;$ [b]b.)[/b] for any real numbers $a,b,c$ we have $P(a + b,c) + P(b + c,a) + P(c + a,b) = 0;$ [b]c.)[/b] $P(1,0) =1.$

2023 Polish Junior Math Olympiad Finals, 1.

Determine whether there exist real numbers $x$, $y$, $z$, such that \[x+\frac{1}{y}=z,\quad y+\frac{1}{z}=x,\quad z+\frac{1}{x}=y.\]

1956 AMC 12/AHSME, 29

The points of intersection of $ xy \equal{} 12$ and $ x^2 \plus{} y^2 \equal{} 25$ are joined in succession. The resulting figure is: $ \textbf{(A)}\ \text{a straight line} \qquad\textbf{(B)}\ \text{an equilateral triangle} \qquad\textbf{(C)}\ \text{a parallelogram}$ $ \textbf{(D)}\ \text{a rectangle} \qquad\textbf{(E)}\ \text{a square}$

2017 Yasinsky Geometry Olympiad, 2

In the tetrahedron $DABC, AB=BC, \angle DBC =\angle DBA$. Prove that $AC \perp DB$.

2015 Thailand TSTST, 1

Tags: angle , geometry , ratio
Let $D$ be a point inside an acute triangle $ABC$ such that $\angle ADC = \angle A +\angle B$, $\angle BDA = \angle B + \angle C$ and $\angle CDB = \angle C + \angle A$. Prove that $\frac{AB \cdot CD}{AD} = \frac{AC \cdot CB} {AB}$.

2018 OMMock - Mexico National Olympiad Mock Exam, 1

Let $ABCD$ be a trapezoid with bases $AD$ and $BC$, and let $M$ be the midpoint of $CD$. The circumcircle of triangle $BCM$ meets $AC$ and $BD$ again at $E$ and $F$, with $E$ and $F$ distinct, and line $EF$ meets the circumcircle of triangle $AEM$ again at $P$. Prove that $CP$ is parallel to $BD$. [i]Proposed by Ariel García[/i]

2019 Novosibirsk Oral Olympiad in Geometry, 1

Tags: distance , geometry
Lyuba, Tanya, Lena and Ira ran across a flat field. At some point it turned out that among the pairwise distances between them there are distances of $1, 2, 3, 4$ and $5$ meters, and there are no other distances. Give an example of how this could be.

2007 Princeton University Math Competition, 10

Tags: geometry
$A$ and $B$ are on a circle of radius $20$ centered at $C$, and $\angle ACB = 60^\circ$. $D$ is chosen so that $D$ is also on the circle, $\angle ACD = 160^\circ$, and $\angle DCB = 100^\circ$. Let $E$ be the intersection of lines $AC$ and $BD$. What is $DE$?

1999 Croatia National Olympiad, Problem 1

A triangle $ABC$ is inscribed in a rectangle $APQR$ so that points $B$ and $C$ lie on segments $PQ$ and $QR$, respectively. If $\alpha,\beta,\gamma$ are the angles of the triangle, prove that $$\cot\alpha\cdot S_{BCQ}=\cot\beta\cdot S_{ACR}+\cot\gamma\cdot S_{ABP}.$$

2009 Greece Team Selection Test, 1

Suppose that $a$ is an even positive integer and $A=a^{n}+a^{n-1}+\ldots +a+1,n\in \mathbb{N^{*}}$ is a perfect square.Prove that $8\mid a$.

2022 Princeton University Math Competition, A4 / B6

Find the number of ordered pairs $(x,y)$ of integers with $0 \le x < 2023$ and $0 \le y < 2023$ such that $y^3 \equiv x^2 \pmod{2023}.$

2009 AMC 12/AHSME, 11

Tags: quadratic
The figures $ F_1$, $ F_2$, $ F_3$, and $ F_4$ shown are the first in a sequence of figures. For $ n\ge3$, $ F_n$ is constructed from $ F_{n \minus{} 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $ F_{n \minus{} 1}$ had on each side of its outside square. For example, figure $ F_3$ has $ 13$ diamonds. How many diamonds are there in figure $ F_{20}$? [asy]unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); path d=(1/2,0)--(0,sqrt(3)/2)--(-1/2,0)--(0,-sqrt(3)/2)--cycle; marker m=marker(scale(5)*d,Fill); path f1=(0,0); path f2=(0,0)--(-1,1)--(1,1)--(1,-1)--(-1,-1); path[] g2=(-1,1)--(-1,-1)--(0,0)^^(1,-1)--(0,0)--(1,1); path f3=f2--(-2,-2)--(-2,0)--(-2,2)--(0,2)--(2,2)--(2,0)--(2,-2)--(0,-2); path[] g3=g2^^(-2,-2)--(0,-2)^^(2,-2)--(1,-1)^^(1,1)--(2,2)^^(-1,1)--(-2,2); path[] f4=f3^^(-3,-3)--(-3,-1)--(-3,1)--(-3,3)--(-1,3)--(1,3)--(3,3)-- (3,1)--(3,-1)--(3,-3)--(1,-3)--(-1,-3); path[] g4=g3^^(-2,-2)--(-3,-3)--(-1,-3)^^(3,-3)--(2,-2)^^(2,2)--(3,3)^^ (-2,2)--(-3,3); draw(f1,m); draw(shift(5,0)*f2,m); draw(shift(5,0)*g2); draw(shift(12,0)*f3,m); draw(shift(12,0)*g3); draw(shift(21,0)*f4,m); draw(shift(21,0)*g4); label("$F_1$",(0,-4)); label("$F_2$",(5,-4)); label("$F_3$",(12,-4)); label("$F_4$",(21,-4));[/asy]$ \textbf{(A)}\ 401 \qquad \textbf{(B)}\ 485 \qquad \textbf{(C)}\ 585 \qquad \textbf{(D)}\ 626 \qquad \textbf{(E)}\ 761$

2001 Singapore MO Open, 1

In a parallelogram $ABCD$, the perpendiculars from $A$ to $BC$ and $CD$ meet the line segments $BC$ and $CD$ at the points $E$ and $F$ respectively. Suppose $AC = 37$ cm and $EF = 35$ cm. Let $H$ be the orthocentre of $\vartriangle AEF$. Find the length of $AH$ in cm. Show the steps in your calculations.