Found problems: 85335
2019 Saudi Arabia JBMO TST, 4
In the triangle $ABC$, where $<$ $ACB$ $=$ $45$, $O$ and $H$ are the center the circumscribed circle, respectively, the orthocenter. The line that passes through $O$ and is perpendicular to $CO$ intersects $AC$ and $BC$ in $K$, respectively $L$. Show that the perimeter of $KLH$ is equal to the diameter of the circumscribed circle of triangle $ABC$.
2016 Oral Moscow Geometry Olympiad, 4
Let $M$ and $N$ be the midpoints of the hypotenuse $AB$ and the leg $BC$ of a right triangles $ABC$ respectively. The excircle of the triangle $ACM$ touches the side $AM$ at point $Q$, and line $AC$ at point $P$. Prove that points $P, Q$ and $N$ lie on one straight line.
2010 Indonesia TST, 1
Let $ ABCD$ be a trapezoid such that $ AB \parallel CD$ and assume that there are points $ E$ on the line outside the segment $ BC$ and $ F$ on the segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Let $ I,J,K$ respectively be the intersection of line $ EF$ and line $ CD$, the intersection of line $ EF$ and line $ AB$, and the midpoint of segment $ EF$. Prove that $ K$ is on the circumcircle of triangle $ CDJ$ if and only if $ I$ is on the circumcircle of triangle $ ABK$.
[i]Utari Wijayanti, Bandung[/i]
Cono Sur Shortlist - geometry, 2020.G3.3
Let $ABC$ be an acute triangle such that $AC<BC$ and $\omega$ its circumcircle. $M$ is the midpoint of $BC$. Points $F$ and $E$ are chosen in $AB$ and $BC$, respectively, such that $AC=CF$ and $EB=EF$. The line $AM$ intersects $\omega$ in $D\neq A$. The line $DE$ intersects the line $FM$ in $G$. Prove that $G$ lies on $\omega$.
2017 NIMO Problems, 1
Let $x, y$ be positive real numbers. If \[129-x^2=195-y^2=xy,\] then $x = \frac{m}{n}$ for relatively prime positive integers $m, n$. Find $100m+n$.
[i]Proposed by Michael Tang
1964 Czech and Slovak Olympiad III A, 4
Points $A, S$ are given in plane such that $AS = a > 0$ as well as positive numbers $b, c$ satisfying $b < a < c$. Construct an equilateral triangle $ABC$ with the property $BS = b$, $CS = c$. Discuss conditions of solvability.
2003 AMC 10, 20
In rectangle $ ABCD$, $ AB\equal{}5$ and $ BC\equal{}3$. Points $ F$ and $ G$ are on $ \overline{CD}$ so that $ DF\equal{}1$ and $ GC\equal{}2$. Lines $ AF$ and $ BG$ intersect at $ E$. Find the area of $ \triangle{AEB}$.
[asy]unitsize(6mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
pair A=(0,0), B=(5,0), C=(5,3), D=(0,3), F=(1,3), G=(3,3);
pair E=extension(A,F,B,G);
draw(A--B--C--D--A--E--B);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,NE);
label("$D$",D,NW);
label("$E$",E,N);
label("$F$",F,SE);
label("$G$",G,SW);
label("$B$",B,SE);
label("1",midpoint(D--F),N);
label("2",midpoint(G--C),N);
label("3",midpoint(B--C),E);
label("3",midpoint(A--D),W);
label("5",midpoint(A--B),S);[/asy]$ \textbf{(A)}\ 10 \qquad
\textbf{(B)}\ \frac{21}{2} \qquad
\textbf{(C)}\ 12 \qquad
\textbf{(D)}\ \frac{25}{2} \qquad
\textbf{(E)}\ 15$
2024 Pan-American Girls’ Mathematical Olympiad, 5
Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
$f(f(x+y) - f(x)) + f(x)f(y) = f(x^2) - f(x+y),$
for all real numbers $x, y$.
2012 Sharygin Geometry Olympiad, 7
A convex pentagon $P $ is divided by all its diagonals into ten triangles and one smaller pentagon $P'$. Let $N$ be the sum of areas of five triangles adjacent to the sides of $P$ decreased by the area of $P'$. The same operations are performed with the pentagon $P'$, let $N'$ be the similar difference calculated for this pentagon. Prove that $N > N'$.
(A.Belov)
2021 Iran MO (3rd Round), 3
Find all functions $f: \mathbb{Q}[x] \to \mathbb{R}$ such that:
(a) for all $P, Q \in \mathbb{Q}[x]$, $f(P \circ Q) = f(Q \circ P);$
(b) for all $P, Q \in \mathbb{Q}[x]$ with $PQ \neq 0$, $f(P\cdot Q) = f(P) + f(Q).$
($P \circ Q$ indicates $P(Q(x))$.)
2014 Poland - Second Round, 1.
Let $x, y$ be positive integers such that $\frac{x^2}{y}+\frac{y^2}{x}$ is an integer. Prove that $y|x^2$.
1997 Moldova Team Selection Test, 2
In a convex pentagon every diagonal is parallel to one side. Show that the ratios between the lengths of diagonals and the sides parallel to them are equal and find their value.
2018 Saint Petersburg Mathematical Olympiad, 6
$\alpha,\beta$ are positive irrational numbers and $[\alpha[\beta x]]=[\beta[\alpha x]]$ for every positive $x$. Prove that $\alpha=\beta$
2019 Jozsef Wildt International Math Competition, W. 47
[list=1]
[*] If $a$, $b$, $c$, $d > 0$, show inequality:$$\left(\tan^{-1}\left(\frac{ad-bc}{ac+bd}\right)\right)^2\geq 2\left(1-\frac{ac+bd}{\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}}\right)$$
[*] Calculate $$\lim \limits_{n \to \infty}n^{\alpha}\left(n- \sum \limits_{k=1}^n\frac{n^+k^2-k}{\sqrt{\left(n^2+k^2\right)\left(n^2+(k-1)^2\right)}}\right)$$where $\alpha \in \mathbb{R}$
[/list]
2007 Romania Team Selection Test, 4
i) Find all infinite arithmetic progressions formed with positive integers such that there exists a number $N \in \mathbb{N}$, such that for any prime $p$, $p > N$,
the $p$-th term of the progression is also prime.
ii) Find all polynomials $f(X) \in \mathbb{Z}[X]$, such that there exist $N \in \mathbb{N}$, such that for any prime $p$, $p > N$, $| f(p) |$ is also prime.
[i]Dan Schwarz[/i]
2023 AIME, 13
Let $A$ be an acute angle such that $\tan A = 2\cos A$. Find the number of positive integers $n$ less than or equal to $1000$ such that $\sec^n A + \tan^n A$ is a positive integer whose units digit is $9$.
1953 Polish MO Finals, 3
Through each vertex of a tetrahedron with a given volume $ V $, a plane is drawn parallel to the opposite face of the tetrahedron. Calculate the volume of the tetrahedron formed by these planes.
2015 IMO, 5
Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2023 Moldova EGMO TST, 3
Let there be a quadrilateral $ABCD$ such that $\angle CAD=45, \angle ACD=30, \angle BAC=\angle BCA=15$. Find $\angle DBC$.
2011 Purple Comet Problems, 6
The following addition problem is not correct if the numbers are interpreted as
base 10 numbers. In what number base is the problem correct?
$66+
87+
85
+48
=
132$
2008 AMC 10, 21
Ten chairs are evenly spaced around a round table and numbered clockwise from $ 1$ through $ 10$. Five married couples are to sit in the chairs with men and women alternating, and no one is to sit either next to or directly across from his or her spouse. How many seating arrangements are possible?
$ \textbf{(A)}\ 240\qquad
\textbf{(B)}\ 360\qquad
\textbf{(C)}\ 480\qquad
\textbf{(D)}\ 540\qquad
\textbf{(E)}\ 720$
2006 Petru Moroșan-Trident, 3
Determine the primitives of:
[b]1)[/b] $ (0,\pi /2)\ni x\mapsto\frac{x^2}{-x+\tan x} $
[b]2)[/b] $ 1<x\mapsto \frac{-1+\ln x}{x^2-\ln^2 x} $
[i]Ion Nedelcu[/i]
2000 All-Russian Olympiad, 6
A perfect number, greater than $6$, is divisible by $3$. Prove that it is also divisible by $9$.
2024 Canadian Mathematical Olympiad Qualification, 8
A sequence of $X$s and $O$s is given, such that no three consecutive characters in the sequence are all the same, and let $N$ be the number of characters in this sequence. Maia may swap two consecutive characters in the sequence. After each swap, any consecutive block of three or more of the same character will be erased (if there are multiple consecutive blocks of three or more characters after a swap, then they will be erased at the same time), until there are no more consecutive blocks of three or more of the same character. For example, if the original sequence were $XXOOXOXO$ and Maia swaps the fifth and sixth character, the end result will be $$XXOOOXXO \to XXXXO \to O.$$ Find the maximum value $N$ for which Maia can’t necessarily erase all the characters after a series of swaps. Partial credit will be awarded for correct proofs of lower and upper bounds on $N$.
2007 Olympic Revenge, 5
Find all functions $f\colon R \to R$ such that
\[f\left(x^{2}+yf(x)\right) = f(x)^{2}+xf(y)\]
for all reals $x,y$.