Found problems: 85335
2012 Tournament of Towns, 6
(a) A point $A$ is marked inside a sphere. Three perpendicular lines drawn through $A$ intersect the sphere at six points. Prove that the centre of gravity of these six points does not depend on the choice of such three lines.
(b) An icosahedron with the centre $A$ is placed inside a sphere (its centre does not necessarily coincide with the centre of the sphere). The rays going from $A$ to the vertices of the icosahedron mark $12$ points on the sphere. Then the icosahedron is rotated about its centre. New rays mark new $12$ points on the sphere. Let $O$ and $N$ be the centres of mass of old and new points respectively. Prove that $O = N$.
1969 IMO Shortlist, 14
$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and
$q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$
1987 IMO Longlists, 72
Is it possible to cover a rectangle of dimensions $m \times n$ with bricks that have the trimino angular shape (an arrangement of three unit squares forming the letter $\text L$) if:
[b](a)[/b] $m \times n = 1985 \times 1987;$
[b](b)[/b] $m \times n = 1987 \times 1989 \quad ?$
2014 Contests, 1
Let $p$ be an odd prime.Positive integers $a,b,c,d$ are less than $p$,and satisfy $p|a^2+b^2$ and $p|c^2+d^2$.Prove that exactly one of $ac+bd$ and $ad+bc$ is divisible by $p$
2005 Miklós Schweitzer, 1
Let [n] be the set {1, 2,. . . , n}.
For any $a, b \in N$, denote $G (a, b)$ by a graph (not directed) defined by the following rule: the vertices have the form (i, f), where $i \in [a]$, and $f: [a] \to [b]$. A vertex (i, f) and a vertex (j, g) are connected if $i \neq j$, and $f (k) \neq g (k)$ holds exactly for k strictly between i and j. Prove that for any $c \in N$ there is $a, b \in N$ such that the vertices of G (a, b) cannot be well-colored with $c$ colors.
2004 Austria Beginners' Competition, 4
Of a rhombus $ABCD$ we know the circumradius $R$ of $\Delta ABC$ and $r$ of $\Delta BCD$. Construct the rhombus.
2022 Yasinsky Geometry Olympiad, 6
Let $\omega$ be the circumscribed circle of the triangle $ABC$, in which $AC< AB$, $K$ is the center of the arc $BAC$, $KW$ is the diameter of the circle $\omega$. The circle $\gamma$ is inscribed in the curvilinear triangle formed by the segments $BC$, $AB$ and the arc $AC$ of the circle $\omega$. It turned out that circle $\gamma$ also touches $KW$ at point $F$. Let $I$ be the center of the triangle $ABC$, $M$ is the midpoint of the smaller arc $AK$, and $T$ is the second intersection point of $MI$ with the circle $\omega$. Prove that lines $FI$, $TW$ and $BC$ intersect at one point.
(Mykhailo Sydorenko)
Kyiv City MO Juniors 2003+ geometry, 2021.9.51
Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. A line passing through point $B$ intersects $\omega_1$ for the second time at point $C$ and $\omega_2$ at point $D$. The line $AC$ intersects circle $\omega_2$ for the second time at point $F$, and the line $AD$ intersects the circle $\omega_1$ for the second time at point $E$ . Let point $O$ be the center of the circle circumscribed around $\vartriangle AEF$. Prove that $OB \perp CD$.
2013 District Olympiad, 4
Let $n\in {{\mathbb{N}}^{*}}$. Prove that $2\sqrt{{{2}^{n}}}\cos \left( n\arccos \frac{\sqrt{2}}{4} \right)$ is an odd integer.
Kvant 2021, M2649
Initially, the point-like particles $A, B$ and $C{}$ are located respectively at the points $(0,0), (1,0)$ and $(0,1)$ in the coordinate plane. Every minute some two particles repel each other along the straight line connecting their current positions, moving the same (positive) distance.
[list=a]
[*]Can the particle $A{}$ be at the point $(3,3)$? What about the point $(2,3)$?
[*]Can the particles $B{}$ and $C{}$ be at the same time at the points $(0,100)$ and $(100,0)$ respectively?
[/list]
[i]Proposed by K. Krivosheev[/i]
2012 India Regional Mathematical Olympiad, 1
Let ABCD be a unit square. Draw a quadrant of a circle with A as centre and B;D
as end points of the arc. Similarly, draw a quadrant of a circle with B as centre and
A;C as end points of the arc. Inscribe a circle ? touching the arc AC internally, the
arc BD internally and also touching the side AB. Find the radius of the circle ?.
1970 IMO Longlists, 22
In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$
Math Hour Olympiad, Grades 5-7, 2014.57
[u]Round 1[/u]
[b]p1.[/b] Three snails – Alice, Bobby, and Cindy – were racing down a road.
Whenever one snail passed another, it waved at the snail it passed.
During the race, Alice waved $3$ times and was waved at twice.
Bobby waved $4$ times and was waved at $3$ times.
Cindy waved $5$ times. How many times was she waved at?
[b]p2.[/b] Sherlock and Mycroft are playing Battleship on a $4\times 4$ grid. Mycroft hides a single $3\times 1$ cruiser somewhere on the board. Sherlock can pick squares on the grid and fire upon them. What is the smallest number of shots Sherlock has to fire to guarantee at least one hit on the cruiser?
[b]p3.[/b] Thirty girls – $13$ of them in red dresses and $17$ in blue dresses – were dancing in a circle, hand-in-hand. Afterwards, each girl was asked if the girl to her right was in a blue dress. Only the girls who had both neighbors in red dresses or both in blue dresses told the truth. How many girls could have answered “Yes”?
[b]p4.[/b] Herman and Alex play a game on a $5\times 5$ board. On his turn, a player can claim any open square as his territory. Once all the squares are claimed, the winner is the player whose territory has the longer border. Herman goes first. If both play their best, who will win, or will the game end in a draw?
[img]https://cdn.artofproblemsolving.com/attachments/5/7/113d54f2217a39bac622899d3d3eb51ec34f1f.png[/img]
[b]p5.[/b] Is it possible to find $2014$ distinct positive integers whose sum is divisible by each of them?
[u]Round 2[/u]
[b]p6.[/b] Hermione and Ron play a game that starts with 129 hats arranged in a circle. They take turns magically transforming the hats into animals. On each turn, a player picks a hat and chooses whether to change it into a badger or into a raven. A player loses if after his or her turn there are two animals of the same species right next to each other. Hermione goes first. Who loses?
[b]p7.[/b] Three warring states control the corner provinces of the island whose map is shown below.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/4e2f436be1dcd3f899aa34145356f8c66cda82.png[/img]
As a result of war, each of the remaining $18$ provinces was occupied by one of the states. None of the states was able to occupy any province on the coast opposite their corner. The states would like to sign a peace treaty. To do this, they each must send ambassadors to a place where three provinces, one controlled by each state, come together. Prove that they can always find such a place to meet.
For example, if the provinces are occupied as shown here, the squares mark possible meeting spots.
[img]https://cdn.artofproblemsolving.com/attachments/e/b/81de9187951822120fc26024c1c1fbe2138737.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1986 IMO Longlists, 28
A particle moves from $(0, 0)$ to $(n, n)$ directed by a fair coin. For each head it moves one step east and for each tail it moves one step north. At $(n, y), y < n$, it stays there if a head comes up and at $(x, n), x < n$, it stays there if a tail comes up. Let$ k$ be a fixed positive integer. Find the probability that the particle needs exactly $2n+k$ tosses to reach $(n, n).$
1954 Putnam, B2
Let $s$ denote the sum of the alternating harmonic series. Rearrange this series as follows
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} +\frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \ldots$$
Assume as known that this series converges as well and denote its sum by $S$. Denote by $s_k, S_k$ respectively the $k$-th partial sums of both series. Prove that
$$ \!\!\!\! \text{i})\; S_{3n} = s_{4n} +\frac{1}{2} s_{2n}.$$
$$ \text{ii}) \; S\ne s.$$
1975 Bulgaria National Olympiad, Problem 4
In the plane are given a circle $k$ with radii $R$ and the points $A_1,A_2,\ldots,A_n$, lying on $k$ or outside $k$. Prove that there exist infinitely many points $X$ from the given circumference for which
$$\sum_{i=1}^n A_iX^2\ge2nR^2.$$
Does there exist a pair of points on different sides of some diameter, $X$ and $Y$ from $k$, such that
$$\sum_{i=1}^n A_iX^2\ge2nR^2\text{ and }\sum_{i=1}^n A_iY^2\ge2nR^2?$$
[i]H. Lesov[/i]
2019 Mathematical Talent Reward Programme, SAQ: P 4
Are there infinitely many natural numbers $n$ such that the sum of 2019th powers of the digits of $n$ is
equal to $n$ ? [b]You don't need to find any such $n$. Just provide mathematical justification if you
think there are infinitely many or finitely many such natural numbers[/b]
1978 Bundeswettbewerb Mathematik, 4
A prime number has the property that however its decimal digits are permuted, the obtained number is also prime. Prove that this number has at most three different digits. Also prove a stronger statement.
2023 Iranian Geometry Olympiad, 5
A polygon is decomposed into triangles by drawing some non-intersecting interior diagonals in such a way that for every pair of triangles of the triangulation sharing a common side, the sum of the angles opposite to this common side is greater than $180^o$.
a) Prove that this polygon is convex.
b) Prove that the circumcircle of every triangle used in the decomposition contains the entire polygon.
[i]Proposed by Morteza Saghafian - Iran[/i]
2024 LMT Fall, 12
Eddie assigns each of Jason, Jerry, and Jonathan a different positive integer. The three are each perfectly logical and currently know that their numbers are distinct but don't know each other's numbers. Additionally, if one of them knows the answer to the question they will say so immediately. They have the following conversation listed below in chronological order:
[list]
[*] Eddie: Does anyone know who has the smallest number?
[*] Jason, Jerry, Jonathan (at the same time): I'm not sure.
[*] Jonathan: Now I know who has the smallest number.
[*] Eddie: Does anyone know who has the largest number?
[*] Jason, Jonathan, Jerry (at the same time): I'm not sure.
[*] Jerry: Now I know who has the largest number.
[*] Jason: Wow, our numbers are in an geometric sequence!
[/list]
Find the sum of their numbers.
2012 NIMO Problems, 3
A polygon $A_1A_2A_3\dots A_n$ is called [i]beautiful[/i] if there exist indices $i$, $j$, and $k$ such that $\measuredangle A_iA_jA_k = 144^\circ$. Compute the number of integers $3 \le n \le 2012$ for which a regular $n$-gon is beautiful.
[i]Proposed by Aaron Lin[/i]
2017 Princeton University Math Competition, A6/B8
Together, Kenneth and Ellen pick a real number $a$. Kenneth subtracts $a$ from every thousandth root of unity (that is, the thousand complex numbers $\omega$ for which $\omega^{1000}=1$) then inverts each, then sums the results. Ellen inverts every thousandth root of unity, then subtracts $a$ from each, and then sums the results. They are surprised to find that they actually got the same answer! How many possible values of $a$ are there?
1985 AIME Problems, 4
A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly 1/1985.
[asy]
size(200);
pair A=(0,1), B=(1,1), C=(1,0), D=origin;
draw(A--B--C--D--A--(1,1/6));
draw(C--(0,5/6)^^B--(1/6,0)^^D--(5/6,1));
pair point=( 0.5 , 0.5 );
//label("$A$", A, dir(point--A));
//label("$B$", B, dir(point--B));
//label("$C$", C, dir(point--C));
//label("$D$", D, dir(point--D));
label("$1/n$", (11/12,1), N, fontsize(9));[/asy]
1957 Moscow Mathematical Olympiad, 362
(a) A circle is inscribed in a triangle. The tangent points are the vertices of a second triangle in which another circle is inscribed. Its tangency points are the vertices of a third triangle. The angles of this triangle are identical to those of the first triangle. Find these angles.
(b) A circle is inscribed in a scalene triangle. The tangent points are vertices of another triangle, in which a circle is inscribed whose tangent points are vertices of a third triangle, in which a third circle is inscribed, etc. Prove that the resulting sequence does not contain a pair of similar triangles.
1990 Poland - Second Round, 3
In a chess tournament, each player played at most one game against each other, and the number of games played by each player is not less than the set natural number $ n $. Prove that it is possible to divide players into two groups $ A $ and $ B $ in such a way that the number of games played by each player of group $ A $ with players of group $ B $ is not less than $ n/2 $ and at the same time the number of games played by each player of the $ B $ group with players of the $ A $ group was not less than $ n/2 $.