Found problems: 2265
1964 IMO Shortlist, 6
In tetrahedron $ABCD$, vertex $D$ is connected with $D_0$, the centrod if $\triangle ABC$. Line parallel to $DD_0$ are drawn through $A,B$ and $C$. These lines intersect the planes $BCD, CAD$ and $ABD$ in points $A_2, B_1,$ and $C_1$, respectively. Prove that the volume of $ABCD$ is one third the volume of $A_1B_1C_1D_0$. Is the result if point $D_o$ is selected anywhere within $\triangle ABC$?
1958 February Putnam, B4
Title is self explanatory. Pick two points on the unit sphere. What is the expected distance between them?
1989 IMO Longlists, 67
Prove that the intersection of a plane and a regular tetrahedron can be an obtuse-angled triangle and that the obtuse angle in any such triangle is always smaller than $ 120^{\circ}.$
2010 Middle European Mathematical Olympiad, 11
For a nonnegative integer $n$, define $a_n$ to be the positive integer with decimal representation
\[1\underbrace{0\ldots0}_{n}2\underbrace{0\ldots0}_{n}2\underbrace{0\ldots0}_{n}1\mbox{.}\]
Prove that $\frac{a_n}{3}$ is always the sum of two positive perfect cubes but never the sum of two perfect squares.
[i](4th Middle European Mathematical Olympiad, Team Competition, Problem 7)[/i]
1978 Germany Team Selection Test, 5
Let $E$ be a finite set of points such that $E$ is not contained in a plane and no three points of $E$ are collinear. Show that at least one of the following alternatives holds:
(i) $E$ contains five points that are vertices of a convex pyramid having no other points in common with $E;$
(ii) some plane contains exactly three points from $E.$
1979 Canada National Olympiad, 2
It is known in Euclidean geometry that the sum of the angles of a triangle is constant. Prove, however, that the sum of the dihedral angles of a tetrahedron is not constant.
2012-2013 SDML (Middle School), 11
Six different-sized cubes are glued together, one on top of the other. The bottom cube has edge length $8$. Each of the other cubes has four vertices at the midpoints of the edges of the cube below it as shown. The entire solid is then dipped in red paint. What is the total area of the red-painted surface on the solid?
(will insert image here later)
$\text{(A) }630\qquad\text{(B) }632\qquad\text{(C) }648\qquad\text{(D) }694\qquad\text{(E) }756$
Today's calculation of integrals, 891
Given a triangle $OAB$ with the vetices $O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0)$ in the $xyz$ space.
Let $V$ be the cone obtained by rotating the triangle around the $x$-axis.
Find the volume of the solid obtained by rotating the cone $V$ around the $y$-axis.
2006 China Second Round Olympiad, 10
Suppose four solid iron balls are placed in a cylinder with the radius of 1 cm, such that every two of the four balls are tangent to each other, and the two balls in the lower layer are tangent to the cylinder base. Now put water into the cylinder. Find, in $\text{cm}^2$, the volume of water needed to submerge all the balls.
2017 Yasinsky Geometry Olympiad, 5
$ABCD$ is a rectangle. The segment $MA$ is perpendicular to plane $ABC$ . $MB= 15$ , $MC=24$ , $MD=20$. Find the length of $MA$ .
1983 Bulgaria National Olympiad, Problem 3
A regular triangular pyramid $ABCD$ with the base side $AB=a$ and the lateral edge $AD=b$ is given. Let $M$ and $N$ be the midpoints of $AB$ and $CD$ respectively. A line $\alpha$ through $MN$ intersects the edges $AD$ and $BC$ at $P$ and $Q$, respectively.
(a) Prove that $AP/AD=BQ/BC$.
(b) Find the ratio $AP/AD$ which minimizes the area of $MQNP$.
2021 Alibaba Global Math Competition, 5
Suppose that $A$ is a finite subset of $\mathbb{R}^d$ such that
(a) every three distinct points in $A$ contain two points that are exactly at unit distance apart, and
(b) the Euclidean norm of every point $v$ in $A$ satisfies
\[\sqrt{\frac{1}{2}-\frac{1}{2\vert A\vert}} \le \|v\| \le \sqrt{\frac{1}{2}+\frac{1}{2\vert A\vert}}.\]
Prove that the cardinality of $A$ is at most $2d+4$.
2014 Flanders Math Olympiad, 1
(a) Prove the parallelogram law that says that in a parallelogram the sum of the squares of the lengths of the four sides equals the sum of the squares of the lengths of the two diagonals.
(b) The edges of a tetrahedron have lengths $a, b, c, d, e$ and $f$. The three line segments connecting the centers of intersecting edges have lengths $x, y$ and $z$. Prove that
$$4 (x^2 + y^2 + z^2) = a^2 + b^2 + c^2 + d^2 + e^2 + f^2$$
1985 Bundeswettbewerb Mathematik, 4
Each point of the 3-dimensional space is coloured with exactly one of the colours red, green and blue. Let $R$, $G$ and $B$, respectively, be the sets of the lengths of those segments in space whose both endpoints have the same colour (which means that both are red, both are green and both are blue, respectively). Prove that at least one of these three sets includes all non-negative reals.
2012 Switzerland - Final Round, 8
Consider a cube and two of its vertices $A$ and $B$, which are the endpoints of a face diagonal. A [i]path [/i] is a sequence of cube angles, each step of one angle along a cube edge is walked to one of the three adjacent angles. Let $a$ be the number of paths of length $2012$ that starts at point $A$ and ends at $A$ and let b be the number of ways of length $2012$ that starts in $A$ and ends in $B$. Decide which of the two numbers $a$ and $b$ is the larger.
2005 Sharygin Geometry Olympiad, 23
Envelop the cube in one layer with five convex pentagons of equal areas.
Kvant 2019, M2580
We are given a convex four-sided pyramid with apex $S$ and base face $ABCD$ such that the pyramid has an inscribed sphere (i.e., it contains a sphere which is tangent to each race). By making cuts along the edges $SA,SB,SC,SD$ and rotating the faces $SAB,SBC,SCD,SDA$ outwards into the plane $ABCD$, we unfold the pyramid into the polygon $AKBLCMDN$ as shown in the figure. Prove that $K,L,M,N$ are concyclic.
[i] Tibor Bakos and Géza Kós [/i]
1990 Romania Team Selection Test, 4
Let $M$ be a point on the edge $CD$ of a tetrahedron $ABCD$ such that the tetrahedra $ABCM$ and $ABDM$ have the same total areas. We denote by $\pi_{AB}$ the plane $ABM$. Planes $\pi_{AC},...,\pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB},...,\pi_{CD}$ are concurrent in a certain point $N$, and show that $N$ is symmetric to the incenter $I$ with respect to the barycenter $G$.
2011 National Olympiad First Round, 33
What is the largest volume of a sphere which touches to a unit sphere internally and touches externally to a regular tetrahedron whose corners are over the unit sphere?
$\textbf{(A)}\ \frac13 \qquad\textbf{(B)}\ \frac14 \qquad\textbf{(C)}\ \frac12\left ( 1 - \frac1{\sqrt3} \right ) \qquad\textbf{(D)}\ \frac12\left ( \frac{2\sqrt2}{\sqrt3} - 1 \right ) \qquad\textbf{(E)}\ \text{None}$
2011 Pre-Preparation Course Examination, 1
[b]a)[/b] prove that for every compressed set $K$ in the space $\mathbb R^3$, the function $f:\mathbb R^3 \longrightarrow \mathbb R$ that $f(p)=inf\{|p-k|,k\in K\}$ is continuous.
[b]b)[/b] prove that we cannot cover the sphere $S^2\subseteq \mathbb R^3$ with it's three closed sets, such that none of them contain two antipodal points.
1999 Mongolian Mathematical Olympiad, Problem 5
The edge lengths of a tetrahedron are a, b, c, d, e, f, the areas of its faces
are S1, S2, S3, S4, and its volume is V .
Prove that
2 [S1 S2 S3 S4](1/2) > 3V [abcdef](1/6)
this problem comes from: http://www.imomath.com/othercomp/jkasfvgkusa/MonMO99.pdf
I was just wondering if someone could write it in LATEX form.
[color=red]_____________________________________
EDIT by moderator: If you type[/color]
[code]The edge lengths of a tetrahedron are $a, b, c, d, e, f,$ the areas of its faces are $S_1, S_2, S_3, S_4,$ and its volume is $V.$ Prove that
$2 \sqrt{S_1 S_2 S_3 S_4} > 3V \sqrt[6]{abcdef}$[/code]
[color=red]it shows up as:[/color]
The edge lengths of a tetrahedron are $ a, b, c, d, e, f,$ the areas of its faces are $ S_1, S_2, S_3, S_4,$ and its volume is $ V.$ Prove that
$ 2 \sqrt{S_1 S_2 S_3 S_4} > 3V \sqrt[6]{abcdef}$
2004 All-Russian Olympiad, 4
A parallelepiped is cut by a plane along a 6-gon. Supposed this 6-gon can be put into a certain rectangle $ \pi$ (which means one can put the rectangle $ \pi$ on the parallelepiped's plane such that the 6-gon is completely covered by the rectangle). Show that one also can put one of the parallelepiped' faces into the rectangle $ \pi.$
1969 Yugoslav Team Selection Test, Problem 5
Prove that the product of the sines of two opposite dihedrals in a tetrahedron is proportional to the product of the lengths of the edges of these dihedrals.
2016 Fall CHMMC, 12
For a positive real number $a$, let $C$ be the cube with vertices at $(\pm a, \pm a, \pm a)$ and let $T$ be the tetrahedron with vertices at $(2a,2a,2a),(2a, -2a, -2a),(-2a, 2a, -2a),(-2a, -2a, -2a)$. If the intersection of $T$ and $C$ has volume $ka^3$ for some $k$, find $k$.
2000 Swedish Mathematical Competition, 4
The vertices of a triangle are three-dimensional lattice points. Show that its area is at least $\frac12$.