This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2010 Sharygin Geometry Olympiad, 1

For each vertex of triangle $ABC$, the angle between the altitude and the bisectrix from this vertex was found. It occurred that these angle in vertices $A$ and $B$ were equal. Furthermore the angle in vertex $C$ is greater than two remaining angles. Find angle $C$ of the triangle.

Novosibirsk Oral Geo Oly VII, 2021.5

In an acute-angled triangle $ABC$ on the side $AC$, point $P$ is chosen in such a way that $2AP = BC$. Points $X$ and $Y$ are symmetric to $P$ with respect to vertices $A$ and $C$, respectively. It turned out that $BX = BY$. Find $\angle BCA$.

2008 Postal Coaching, 1

In triangle $ABC,\angle B > \angle C, T$ is the midpoint of arc $BAC$ of the circumcicle of $ABC$, and $I$ is the incentre of $ABC$. Let $E$ be point such that $\angle AEI = 90^0$ and $AE$ is parallel to $BC$. If $TE$ intersects the circumcircle of $ABC$ at $P(\ne T)$ and $\angle B = \angle IPB$, determine $\angle A$.

Kyiv City MO 1984-93 - geometry, 1991.10.5

Diagonal sections of a regular 8-gon pyramid, which are drawn through the smallest and largest diagonals of the base, are equal. At what angle is the plane passing through the vertex, the pyramids and the smallest diagonal of the base inclined to the base? [hide=original wording]Діагональні перерізи правильної 8-кутної піраміди, які Проведені через найменшу і найбільшу діагоналі основи, рівновеликі. Під яким кутом до основи нахилена площина, що проходить через вершину, піраміди і найменшу діагональ основи?[/hide]

1989 Tournament Of Towns, (218) 2

The point $M$ , inside $\vartriangle ABC$, satisfies the conditions that $\angle BMC = 90^o +\frac12 \angle BAC$ and that the line $AM$ contains the centre of the circumscribed circle of $\vartriangle BMC$. Prove that $M$ is the centre of the inscribed circle of $\vartriangle ABC$.

2017 Auckland Mathematical Olympiad, 5

The altitudes of triangle $ABC$ intersect at a point $H$.Find $\angle ACB$ if it is known that $AB = CH$.

1999 Junior Balkan Team Selection Tests - Moldova, 2

Let $ABC$ be an isosceles right triangle with $\angle A=90^o$. Point $D$ is the midpoint of the side $[AC]$, and point $E \in [AC]$ is so that $EC = 2AE$. Calculate $\angle AEB + \angle ADB$ .

2008 Balkan MO Shortlist, G3

We draw two lines $(\ell_1) , (\ell_2)$ through the orthocenter $H$ of the triangle $ABC$ such that each one is dividing the triangle into two figures of equal area and equal perimeters. Find the angles of the triangle.

2024 Polish MO Finals, 1

Let $X$ be an interior point of a rectangle $ABCD$. Let the bisectors of $\angle DAX$ and $\angle CBX$ intersect in $P$. A point $Q$ satisfies $\angle QAP=\angle QBP=90^\circ$. Show that $PX=QX$.

1996 Czech And Slovak Olympiad IIIA, 4

Tags: angle , product , geometry
Points $A$ and $B$ on the rays $CX$ and $CY$ respectively of an acute angle $XCY$ are given so that $CX < CA = CB < CY$. Construct a line meeting the ray $CX$ and the segments $AB,BC$ at $K,L,M$, respectively, such that $KA \cdot YB = XA \cdot MB = LA\cdot LB \ne 0$.

2007 Estonia Team Selection Test, 4

In square $ABCD,$ points $E$ and $F$ are chosen in the interior of sides $BC$ and $CD$, respectively. The line drawn from $F$ perpendicular to $AE$ passes through the intersection point $G$ of $AE$ and diagonal $BD$. A point $K$ is chosen on $FG$ such that $|AK|= |EF|$. Find $\angle EKF.$

2020 Ukrainian Geometry Olympiad - April, 5

Inside the convex quadrilateral $ABCD$ there is a point $M$ such that $\angle AMB = \angle ADM + \angle BCM$ and $\angle AMD = \angle ABM + \angle DCM$. Prove that $AM \cdot CM + BM \cdot DM \ge \sqrt{AB \cdot BC\cdot CD \cdot DA}$

2008 Hanoi Open Mathematics Competitions, 7

The figure $ABCDE$ is a convex pentagon. Find the sum $\angle DAC + \angle EBD +\angle ACE +\angle BDA + \angle CEB$?

1977 Chisinau City MO, 138

In an isosceles triangle $BAC$ ($| AC | = | AB |$) , point $D$ is marked on the side $AC$. Determine the angles of the triangle $BDC$ if $\angle A = 40^o$ and $|BC|: |AD|= \sqrt3$.

2019 Switzerland - Final Round, 7

Let $ABC$ be a triangle with $\angle CAB = 2 \angle ABC$. Assume that a point $D$ is inside the triangle $ABC$ exists such that $AD = BD$ and $CD = AC$. Show that $\angle ACB = 3 \angle DCB$.

2010 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be an isosceles triangle with $AB = AC$ and let $n$ be a natural number, $n>1$. On the side $AB$ we consider the point $M$ such that $n \cdot AM = AB$. On the side $BC$ we consider the points $P_1, P_2, ....., P_ {n-1}$ such that $BP_1 = P_1P_2 = .... = P_ {n-1} C = \frac{1}{n} BC$. Show that: $\angle {MP_1A} + \angle {MP_2A} + .... + \angle {MP_ {n-1} A} = \frac{1} {2} \angle {BAC}$.

1996 All-Russian Olympiad Regional Round, 11.7

In triangle $ABC$, a point $O$ is taken such that $\angle COA = \angle B + 60^o$, $\angle COB = \angle A + 60^o$, $\angle AOB = \angle C + 60^o$.Prove that if a triangle can be formed from the segments $AO$, $BO$, $CO$, then a triangle can also be formed from the altitudes of triangle $ABC$ and these triangles are similar.

Ukraine Correspondence MO - geometry, 2003.5

Let $O$ be the center of the circle $\omega$, and let $A$ be a point inside this circle, different from $O$. Find all points $P$ on the circle $\omega$ for which the angle $\angle OPA$ acquires the greatest value.

2004 All-Russian Olympiad Regional Round, 9.7

Inside the parallelogram $ABCD$, point $M$ is chosen, and inside the triangle $AMD$, point $N$ is chosen in such a way that $$\angle MNA + \angle MCB =\angle MND + \angle MBC = 180^o.$$ Prove that lines $MN$ and $AB$ are parallel.

2005 Peru MO (ONEM), 3

Let $A,B,C,D$, be four different points on a line $\ell$, so that $AB=BC=CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points of the plane be such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the angle $\angle MBN$.

2018 Hanoi Open Mathematics Competitions, 8

Tags: angle , square , geometry
Let $P$ be a point inside the square $ABCD$ such that $\angle PAC = \angle PCD = 17^o$ (see Figure 1). Calculate $\angle APB$? [img]https://cdn.artofproblemsolving.com/attachments/d/0/0b20ebee1fe28e9c5450d04685ac8537acda07.png[/img]

1985 IMO Longlists, 9

A polyhedron has $12$ faces and is such that: [b][i](i)[/i][/b] all faces are isosceles triangles, [b][i](ii)[/i][/b] all edges have length either $x$ or $y$, [b][i](iii)[/i][/b] at each vertex either $3$ or $6$ edges meet, and [b][i](iv)[/i][/b] all dihedral angles are equal. Find the ratio $x/y.$

1996 North Macedonia National Olympiad, 3

Prove that if $\alpha, \beta, \gamma$ are angles of a triangle, then $\frac{1}{\sin \alpha}+ \frac{1}{\sin \beta} \ge \frac{8}{ 3+2 \ cos\gamma}$ .

Durer Math Competition CD Finals - geometry, 2019.D3

a) Does there exist a quadrilateral with (both of) the following properties: three of its edges are of the same length, but the fourth one is different, and three of its angles are equal, but the fourth one is different? b) Does there exist a pentagon with (both of) the following properties: four of its edges are of the same length, but the fifth one is different, and four of its angles are equal, but the fifth one is different?

1995 Czech And Slovak Olympiad IIIA, 1

Suppose that tetrahedron $ABCD$ satisfies $\angle BAC+\angle CAD+\angle DAB = \angle ABC+\angle CBD+\angle DBA = 180^o$. Prove that $CD \ge AB$.