This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

1978 Czech and Slovak Olympiad III A, 3

Let $\alpha,\beta,\gamma$ be angles of a triangle. Determine all real triplets $x,y,z$ satisfying the system \begin{align*} x\cos\beta+\frac1z\cos\alpha &=1, \\ y\cos\gamma+\frac1x\cos\beta &=1, \\ z\cos\alpha+\frac1y\cos\gamma &=1. \end{align*}

2016 Ecuador NMO (OMEC), 3

Let $A, B, C, D$ be four different points on a line $\ell$, such that $AB = BC = CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points on the plane such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the measure of the angle $\angle MBN$.

2020 Adygea Teachers' Geometry Olympiad, 4

Tags: angle , arc , tangent , min , length , circles , geometry
A circle is inscribed in an angle with vertex $O$, touching its sides at points $M$ and $N$. On an arc $MN$ nearest to point $O$, an arbitrary point $P$ is selected. At point $P$, a tangent is drawn to the circle $P$, intersecting the sides of the angle at points $A$ and $B$. Prove that that the length of the segment $AB$ is the smallest when $P$ is its midpoint.

2007 Thailand Mathematical Olympiad, 6

Tags: max , angle , geometry , ratio
Let $M$ be the midpoint of a given segment $BC$. Point $A$ is chosen to maximize $\angle ABC$ while subject to the condition that $\angle MAC = 20^o$ . What is the ratio $BC/BA$ ?

2008 Postal Coaching, 5

A convex quadrilateral $ABCD$ is given. There rays $BA$ and $CD$ meet in $P$, and the rays $BC$ and $AD$ meet in $Q$. Let $H$ be the projection of $D$ on $PQ$. Prove that $ABCD$ is cyclic if and only if the angle between the rays beginning at $H$ and tangent to the incircle of triangle $ADP$ is equal to the angle between the rays beginning at $H$ and tangent to the incircle of triangle $CDQ$. Also fi nd out whether $ABCD$ is inscribable or circumscribable and justify.

1980 IMO Shortlist, 15

Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540°.

2007 Denmark MO - Mohr Contest, 4

The figure shows a $60^o$ angle in which are placed $2007$ numbered circles (only the first three are shown in the figure). The circles are numbered according to size. The circles are tangent to the sides of the angle and to each other as shown. Circle number one has radius $1$. Determine the radius of circle number $2007$. [img]https://1.bp.blogspot.com/-1bsLIXZpol4/Xzb-Nk6ospI/AAAAAAAAMWk/jrx1zVYKbNELTWlDQ3zL9qc_22b2IJF6QCLcBGAsYHQ/s0/2007%2BMohr%2Bp4.png[/img]

2019 Argentina National Olympiad, 3

In triangle $ABC$ it is known that $\angle ACB = 2\angle ABC$. Furthermore $P$ is an interior point of the triangle $ABC$ such that $AP = AC$ and $PB = PC$. Prove that $\angle BAC = 3 \angle BAP$.

2003 All-Russian Olympiad Regional Round, 11.2

On the diagonal $AC$ of a convex quadrilateral $ABCD$ is chosen such a point $K$ such that $KD = DC$, $\angle BAC = \frac12 \angle KDC$, $\angle DAC = \frac12 \angle KBC$. Prove that $\angle KDA = \angle BCA$ or $\angle KDA = \angle KBA$.

2021 Junior Balkan Team Selection Tests - Moldova, 5

Tags: angle , geometry
Let $ABC$ be the triangle with $\angle ABC = 76^o$ and $\angle ACB = 72^o$. Points $P$ and $Q$ lie on the sides $(AB)$ and $(AC)$, respectively, such that $\angle ABQ = 22^o$ and $\angle ACP = 44^o$. Find the measure of angle $\angle APQ$.

2004 District Olympiad, 4

Consider the isosceles right triangle $ABC$ ($AB = AC$) and the points $M, P \in [AB]$ so that $AM = BP$. Let $D$ be the midpoint of the side $BC$ and $R, Q$ the intersections of the perpendicular from $A$ on$ CM$ with $CM$ and $BC$ respectively. Prove that a) $\angle AQC = \angle PQB$ b) $\angle DRQ = 45^o$

2008 Thailand Mathematical Olympiad, 1

Let $\vartriangle ABC$ be a triangle with $\angle BAC = 90^o$ and $\angle ABC = 60^o$. Point $E$ is chosen on side $BC$ so that $BE : EC = 3 : 2$. Compute $\cos\angle CAE$.

Estonia Open Junior - geometry, 2010.1.2

Given a convex quadrangle $ABCD$ with $|AD| = |BD| = |CD|$ and $\angle ADB = \angle DCA$, $\angle CBD = \angle BAC$, find the sizes of the angles of the quadrangle.

2009 Denmark MO - Mohr Contest, 1

Tags: rotation , geometry , angle
In the figure, triangle $ADE$ is produced from triangle $ABC$ by a rotation by $90^o$ about the point $A$. If angle $D$ is $60^o$ and angle $E$ is $40^o$, how large is then angle $u$? [img]https://1.bp.blogspot.com/-6Fq2WUcP-IA/Xzb9G7-H8jI/AAAAAAAAMWY/hfMEAQIsfTYVTdpd1Hfx15QPxHmfDLEkgCLcBGAsYHQ/s0/2009%2BMohr%2Bp1.png[/img]

2008 Brazil Team Selection Test, 1

Let $AB$ be a chord, not a diameter, of a circle with center $O$. The smallest arc $AB$ is divided into three congruent arcs $AC$, $CD$, $DB$. The chord $AB$ is also divided into three equal segments $AC'$, $C'D'$, $D'B$. Let $P$ be the intersection point of between the lines $CC'$ and $DD'$. Prove that $\angle APB = \frac13 \angle AOB$.

1955 Moscow Mathematical Olympiad, 301

Given a trihedral angle with vertex $O$. Find whether there is a planar section $ABC$ such that the angles $\angle OAB$, $\angle OBA$, $\angle OBC$, $\angle OCB$, $\angle OAC$, $\angle OCA$ are acute.

2013 Czech And Slovak Olympiad IIIA, 5

Given the parallelogram $ABCD$ such that the feet $K, L$ of the perpendiculars from point $D$ on the sides $AB, BC$ respectively are internal points. Prove that $KL \parallel AC$ when $|\angle BCA| + |\angle ABD| = |\angle BDA| + |\angle ACD|$.

2016 Japan Mathematical Olympiad Preliminary, 3

Tags: angle , geometry
A hexagon $ABCDEF$ is inscribed in a circle. Let $P, Q, R, S$ be intersections of $AB$ and $DC$, $BC$ and $ED$, $CD$ and $FE$, $DE$ and $AF$, then $\angle BPC=50^{\circ}$, $\angle CQD=45^{\circ}$, $\angle DRE=40^{\circ}$, $\angle ESF=35^{\circ}$. Let $T$ be an intersection of $BE$ and $CF$. Find $\angle BTC$.

Ukrainian TYM Qualifying - geometry, VIII.2

Investigate the properties of the tetrahedron $ABCD$ for which there is equality $$\frac{AD}{ \sin \alpha}=\frac{BD}{\sin \beta}=\frac{CD}{ \sin \gamma}$$ where $\alpha, \beta, \gamma$ are the values ​​of the dihedral angles at the edges $AD, BD$ and $CD$, respectively.

Novosibirsk Oral Geo Oly VII, 2019.3

Equal line segments are marked in triangle $ABC$. Find its angles. [img]https://cdn.artofproblemsolving.com/attachments/0/2/bcb756bba15ba57013f1b6c4cbe9cc74171543.png[/img]

Russian TST 2020, P3

Let $n>1$ be an integer. Suppose we are given $2n$ points in the plane such that no three of them are collinear. The points are to be labelled $A_1, A_2, \dots , A_{2n}$ in some order. We then consider the $2n$ angles $\angle A_1A_2A_3, \angle A_2A_3A_4, \dots , \angle A_{2n-2}A_{2n-1}A_{2n}, \angle A_{2n-1}A_{2n}A_1, \angle A_{2n}A_1A_2$. We measure each angle in the way that gives the smallest positive value (i.e. between $0^{\circ}$ and $180^{\circ}$). Prove that there exists an ordering of the given points such that the resulting $2n$ angles can be separated into two groups with the sum of one group of angles equal to the sum of the other group.

2016 Switzerland - Final Round, 1

Let $ABC$ be a triangle with $\angle BAC = 60^o$. Let $E$ be the point on the side $BC$ , such that $2 \angle BAE = \angle ACB$ . Let $D$ be the second intersection of $AB$ and the circumcircle of the triangle $AEC$ and $P$ be the second intersection of $CD$ and the circumcircle of the triangle $DBE$. Calculate the angle $\angle BAP$.

1994 Canada National Olympiad, 5

Let $ABC$ be an acute triangle. Let $AD$ be the altitude on $BC$, and let $H$ be any interior point on $AD$. Lines $BH,CH$, when extended, intersect $AC,AB$ at $E,F$ respectively. Prove that $\angle EDH=\angle FDH$.

2008 Abels Math Contest (Norwegian MO) Final, 4a

Tags: area , angle , geometry , circles
Three distinct points $A, B$, and $C$ lie on a circle with centre at $O$. The triangles $AOB, BOC$ , and $COA$ have equal area. What are the possible measures of the angles of the triangle $ABC$ ?

2012 Bosnia and Herzegovina Junior BMO TST, 3

Tags: value , angle , geometry
Internal angles of triangle are $(5x+3y)^{\circ}$, $(3x+20)^{\circ}$ and $(10y+30)^{\circ}$ where $x$ and $y$ are positive integers. Which values can $x+y$ get ?