This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2015 Germany Team Selection Test, 3

Let $ABC$ be an acute triangle with $|AB| \neq |AC|$ and the midpoints of segments $[AB]$ and $[AC]$ be $D$ resp. $E$. The circumcircles of the triangles $BCD$ and $BCE$ intersect the circumcircle of triangle $ADE$ in $P$ resp. $Q$ with $P \neq D$ and $Q \neq E$. Prove $|AP|=|AQ|$. [i](Notation: $|\cdot|$ denotes the length of a segment and $[\cdot]$ denotes the line segment.)[/i]

2014 Turkey EGMO TST, 1

Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$ and $AD$ intersect the circumcircle of $ABC$ for the second time at $E$. Let $P$ be the point symmetric to the point $E$ with respect to the point $D$ and $Q$ be the point of intersection of the lines $CP$ and $AB$. Prove that if $A,C,D,Q$ are concyclic, then the lines $BP$ and $AC$ are perpendicular.

2012 Brazil Team Selection Test, 4

Let $ ABC $ be an acute triangle. Denote by $ D $ the foot of the perpendicular line drawn from the point $ A $ to the side $ BC $, by $M$ the midpoint of $ BC $, and by $ H $ the orthocenter of $ ABC $. Let $ E $ be the point of intersection of the circumcircle $ \Gamma $ of the triangle $ ABC $ and the half line $ MH $, and $ F $ be the point of intersection (other than $E$) of the line $ ED $ and the circle $ \Gamma $. Prove that $ \tfrac{BF}{CF} = \tfrac{AB}{AC} $ must hold. (Here we denote $XY$ the length of the line segment $XY$.)

2013 Greece Team Selection Test, 2

Let $ABC$ be a non-isosceles,aqute triangle with $AB<AC$ inscribed in circle $c(O,R)$.The circle $c_{1}(B,AB)$ crosses $AC$ at $K$ and $c$ at $E$. $KE$ crosses $c$ at $F$ and $BO$ crosses $KE$ at $L$ and $AC$ at $M$ while $AE$ crosses $BF$ at $D$.Prove that: i)$D,L,M,F$ are concyclic. ii)$B,D,K,M,E$ are concyclic.

2007 Junior Balkan MO, 2

Let $ABCD$ be a convex quadrilateral with $\angle{DAC}= \angle{BDC}= 36^\circ$ , $\angle{CBD}= 18^\circ$ and $\angle{BAC}= 72^\circ$. The diagonals and intersect at point $P$ . Determine the measure of $\angle{APD}$.

2006 Iran MO (3rd Round), 2

$ABC$ is a triangle and $R,Q,P$ are midpoints of $AB,AC,BC$. Line $AP$ intersects $RQ$ in $E$ and circumcircle of $ABC$ in $F$. $T,S$ are on $RP,PQ$ such that $ES\perp PQ,ET\perp RP$. $F'$ is on circumcircle of $ABC$ that $FF'$ is diameter. The point of intersection of $AF'$ and $BC$ is $E'$. $S',T'$ are on $AB,AC$ that $E'S'\perp AB,E'T'\perp AC$. Prove that $TS$ and $T'S'$ are perpendicular.

2021 Korea Winter Program Practice Test, 5

$E,F$ are points on $AB,AC$ that satisfies $(B,E,F,C)$ cyclic. $D$ is the intersection of $BC$ and the perpendicular bisecter of $EF$, and $B',C'$ are the reflections of $B,C$ on $AD$. $X$ is a point on the circumcircle of $\triangle{BEC'}$ that $AB$ is perpendicular to $BX$,and $Y$ is a point on the circumcircle of $\triangle{CFB'}$ that $AC$ is perpendicular to $CY$. Show that $DX=DY$.

2022 Vietnam National Olympiad, 3

Let $ABC$ be an acute triangle, $B,C$ fixed, $A$ moves on the big arc $BC$ of $(ABC)$. Let $O$ be the circumcenter of $(ABC)$ $(B,O,C$ are not collinear, $AB \ne AC)$, $(I)$ is the incircle of triangle $ABC$. $(I)$ tangents to $BC$ at $D$. Let $I_a$ be the $A$-excenter of triangle $ABC$. $I_aD$ cuts $OI$ at $L$. Let $E$ lies on $(I)$ such that $DE \parallel AI$. a) $LE$ cuts $AI$ at $F$. Prove that $AF=AI$. b) Let $M$ lies on the circle $(J)$ go through $I_a,B,C$ such that $I_aM \parallel AD$. $MD$ cuts $(J)$ again at $N$. Prove that the midpoint $T$ of $MN$ lies on a fixed circle.

2008 Bulgarian Autumn Math Competition, Problem 9.2

Given a $\triangle ABC$ and the altitude $CH$ ($H$ lies on the segment $AB$) and let $M$ be the midpoint of $AC$. Prove that if the circumcircle of $\triangle ABC$, $k$ and the circumcircle of $\triangle MHC$, $k_{1}$ touch, then the radius of $k$ is twice the radius of $k_{1}$.

2005 USAMO, 3

Let $ABC$ be an acute-angled triangle, and let $P$ and $Q$ be two points on its side $BC$. Construct a point $C_{1}$ in such a way that the convex quadrilateral $APBC_{1}$ is cyclic, $QC_{1}\parallel CA$, and $C_{1}$ and $Q$ lie on opposite sides of line $AB$. Construct a point $B_{1}$ in such a way that the convex quadrilateral $APCB_{1}$ is cyclic, $QB_{1}\parallel BA$, and $B_{1}$ and $Q$ lie on opposite sides of line $AC$. Prove that the points $B_{1}$, $C_{1}$, $P$, and $Q$ lie on a circle.

2022 Oral Moscow Geometry Olympiad, 1

Given an isosceles trapezoid $ABCD$. The bisector of angle $B$ intersects the base $AD$ at point $L$. Prove that the center of the circle circumscribed around triangle $BLD$ lies on the circle circumscribed around the trapezoid. (Yu. Blinkov)

2010 Contests, 3

Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[ R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\] where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$

2010 Contests, 2

Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$

1996 Argentina National Olympiad, 3

The non-regular hexagon $ABCDEF$ is inscribed on a circle of center $O$ and $AB = CD = EF$. If diagonals $AC$ and $BD$ intersect at $M$, diagonals $CE$ and $DF$ intersect at $N$, and diagonals $AE$ and $BF$ intersect at $K$, show that the heights of triangle $MNK$ intersect at $O$.

2009 Germany Team Selection Test, 1

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

2016 Sharygin Geometry Olympiad, P10

Point $X$ moves along side $AB$ of triangle $ABC$, and point $Y$ moves along its circumcircle in such a way that line $XY$ passes through the midpoint of arc $AB$. Find the locus of the circumcenters of triangles $IXY$ , where I is the incenter of $ ABC$.

2024 Mexican Girls' Contest, 3

Let \( ABC \) be a triangle and \( D \) the foot of the altitude from \( A \). Let \( M \) be a point such that \( MB = MC \). Let \( E \) and \( F \) be the intersections of the circumcircle of \( BMD \) and \( CMD \) with \( AD \). Let \( G \) and \( H \) be the intersections of \( MB \) and \( MC \) with \( AD \). Prove that \( EG = FH \).

2018 Junior Regional Olympiad - FBH, 5

It is given square $ABCD$ which is circumscribed by circle $k$. Let us construct a new square so vertices $E$ and $F$ lie on side $ABCD$ and vertices $G$ and $H$ on arc $AB$ of circumcircle. Find out the ratio of area of squares

Geometry Mathley 2011-12, 2.2

Let $ABC$ be a scalene triangle. A circle $(O)$ passes through $B,C$, intersecting the line segments $BA,CA$ at $F,E$ respectively. The circumcircle of triangle $ABE$ meets the line $CF$ at two points $M,N$ such that $M$ is between $C$ and $F$. The circumcircle of triangle $ACF$ meets the line $BE$ at two points $P,Q$ such that $P$ is betweeen $B$ and $E$. The line through $N$ perpendicular to $AN$ meets $BE$ at $R$, the line through $Q$ perpendicular to $AQ$ meets $CF$ at $S$. Let $U$ be the intersection of $SP$ and $NR, V$ be the intersection of $RM$ and $QS$. Prove that three lines $NQ,UV$ and $RS$ are concurrent. Trần Quang Hùng

2004 Bulgaria National Olympiad, 1

Let $ I$ be the incenter of triangle $ ABC$, and let $ A_1$, $ B_1$, $ C_1$ be arbitrary points on the segments $ (AI)$, $ (BI)$, $ (CI)$, respectively. The perpendicular bisectors of $ AA_1$, $ BB_1$, $ CC_1$ intersect each other at $ A_2$, $ B_2$, and $ C_2$. Prove that the circumcenter of the triangle $ A_2B_2C_2$ coincides with the circumcenter of the triangle $ ABC$ if and only if $ I$ is the orthocenter of triangle $ A_1B_1C_1$.

2004 Baltic Way, 19

Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$. Let $M$ be a point on the side $BC$ such that $\angle BAM = \angle DAC$. Further, let $L$ be the second intersection point of the circumcircle of the triangle $CAM$ with the side $AB$, and let $K$ be the second intersection point of the circumcircle of the triangle $BAM$ with the side $AC$. Prove that $KL \parallel BC$.

2002 Junior Balkan MO, 1

The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.

Ukrainian TYM Qualifying - geometry, XI.15

Let $I$ be the point of intersection of the angle bisectors of the $\vartriangle ABC$, $W_1,W_2,W_3$ be point of intersection of lines $AI, BI, CI$ with the circle circumscribed around the triangle, $r$ and $R$ be the radii of inscribed and circumscribed circles respectively. Prove the inequality $$IW_1+ IW_2 + IW_3\ge 2R + \sqrt{2Rr.}$$

2015 AoPS Mathematical Olympiad, 5

Let $ABC$ be a triangle with orthocenter $h$. Let $AH$, $BH$, and $CH$ intersect the circumcircle of $\triangle ABC$ at points $D$, $E$, and $F$. Find the maximum value of $\frac{[DEF]}{[ABC]}$. (Here $[X]$ denotes the area of $X$.) [i]Proposed by tkhalid.[/i]

2013 Sharygin Geometry Olympiad, 19

a) The incircle of a triangle $ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to the bisector $AL$ in points $Q$ and $P$ respectively. Prove that the lines $PC_0, QB_0$ and $BC$ concur. b) Let $AL$ be the bisector of a triangle $ABC$. Points $O_1$ and $O_2$ are the circumcenters of triangles $ABL$ and $ACL$ respectively. Points $B_1$ and $C_1$ are the projections of $C$ and $B$ to the bisectors of angles $B$ and $C$ respectively. Prove that the lines $O_1C_1, O_2B_1,$ and $BC$ concur. c) Prove that the two points obtained in pp. a) and b) coincide.