This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2007 International Zhautykov Olympiad, 3

Let $ABCDEF$ be a convex hexagon and it`s diagonals have one common point $M$. It is known that the circumcenters of triangles $MAB,MBC,MCD,MDE,MEF,MFA$ lie on a circle. Show that the quadrilaterals $ABDE,BCEF,CDFA$ have equal areas.

Ukraine Correspondence MO - geometry, 2005.11

Let the circle $\omega$ be circumscribed around the triangle $\vartriangle ABC$ with right angle $\angle A$. Tangent to the circle $\omega$ at point $A$ intersects the line $BC$ at point $D$. Point $E$ is symmetric to $A$ with respect to the line $BC$. Let $K$ be the foot of the perpendicular drawn from point $A$ on $BE$, $L$ the midpoint of $AK$. The line $BL$ intersects the circle $\omega$ for the second time at the point $N$. Prove that the line $BD$ is tangent to the circle circumscribed around the triangle $\vartriangle ADM$.

2010 N.N. Mihăileanu Individual, 3

Let $ Q $ be a point, $ H,O $ be the orthocenter and circumcenter, respectively, of a triangle $ ABC, $ and $ D,E,F, $ be the symmetric points of $ Q $ with respect to $ A,B,C, $ respectively. Also, $ M,N,P $ are the middle of the segments $ AE,BF,CD, $ and $ G,G',G'' $ are the centroids of $ ABC,MNP,DEF, $ respectively. Prove the following propositions: [b]a)[/b] $ \frac{1}{2}\overrightarrow{OG} =\frac{1}{3}\overrightarrow{OG'}=\frac{1}{4}\overrightarrow{OG''} $ [b]b)[/b] $ Q=O\implies \overrightarrow{OG'} =\overrightarrow{G'H} $ [b]c)[/b] $ Q=H\implies G'=O $ [i]Cătălin Zîrnă[/i]

2006 Czech and Slovak Olympiad III A, 3

In a scalene triangle $ABC$,the bisectors of angle $A,B$ intersect their corresponding sides at $K,L$ respectively.$I,O,H$ denote respectively the incenter,circumcenter and orthocenter of triangle $ABC$. Prove that $A,B,K,L,O$ are concyclic iff $KL$ is the common tangent line of the circumcircles of the three triangles $ALI,BHI$ and $BKI$.

2019 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute-angled triangle with $AC>BC$ and circumcircle $\omega$. Suppose that $P$ is a point on $\omega$ such that $AP=AC$ and that $P$ is an interior point on the shorter arc $BC$ of $\omega$. Let $Q$ be the intersection point of the lines $AP$ and $BC$. Furthermore, suppose that $R$ is a point on $\omega$ such that $QA=QR$ and $R$ is an interior point of the shorter arc $AC$ of $\omega$. Finally, let $S$ be the point of intersection of the line $BC$ with the perpendicular bisector of the side $AB$. Prove that the points $P, Q, R$ and $S$ are concyclic. [i]Proposed by Patrik Bak, Slovakia[/i]

2010 Tuymaada Olympiad, 3

In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.

1986 IMO Longlists, 31

Let $P$ and $Q$ be distinct points in the plane of a triangle $ABC$ such that $AP : AQ = BP : BQ = CP : CQ$. Prove that the line $PQ$ passes through the circumcenter of the triangle.

2019 Yasinsky Geometry Olympiad, p6

In an acute triangle $ABC$ , the bisector of angle $\angle A$ intersects the circumscribed circle of the triangle $ABC$ at the point $W$. From point $W$ , a parallel is drawn to the side $AB$, which intersects this circle at the point $F \ne W$. Describe the construction of the triangle $ABC$, if given are the segments $FA$ , $FW$ and $\angle FAC$. (Andrey Mostovy)

2015 AMC 12/AHSME, 21

A circle of radius $r$ passes through both foci of, and exactly four points on, the ellipse with equation $x^2+16y^2=16$. The set of all possible values of $r$ is an interval $[a,b)$. What is $a+b$? $\textbf{(A) }5\sqrt2+4\qquad\textbf{(B) }\sqrt{17}+7\qquad\textbf{(C) }6\sqrt2+3\qquad\textbf{(D) }\sqrt{15}+8\qquad\textbf{(E) }12$

2013 Dutch BxMO/EGMO TST, 5

Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.

1972 IMO Longlists, 12

A circle $k = (S, r)$ is given and a hexagon $AA'BB'CC'$ inscribed in it. The lengths of sides of the hexagon satisfy $AA' = A'B, BB' = B'C, CC' = C'A$. Prove that the area $P$ of triangle $ABC$ is not greater than the area $P'$ of triangle $A'B'C'$. When does $P = P'$ hold?

1982 IMO Longlists, 46

Prove that if a diagonal is drawn in a quadrilateral inscribed in a circle, the sum of the radii of the circles inscribed in the two triangles thus formed is the same, no matter which diagonal is drawn.

2014 USAMO, 5

Let $ABC$ be a triangle with orthocenter $H$ and let $P$ be the second intersection of the circumcircle of triangle $AHC$ with the internal bisector of the angle $\angle BAC$. Let $X$ be the circumcenter of triangle $APB$ and $Y$ the orthocenter of triangle $APC$. Prove that the length of segment $XY$ is equal to the circumradius of triangle $ABC$.

2016 India IMO Training Camp, 1

Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $A_1,B_1$ and $C_1$ be respectively the midpoints of the arcs $BAC,CBA$ and $ACB$ of $\Gamma$. Show that the inradius of triangle $A_1B_1C_1$ is not less than the inradius of triangle $ABC$.

2013 ELMO Shortlist, 7

Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear. [i]Proposed by Michael Kural[/i]

2008 Kazakhstan National Olympiad, 2

Let $ \triangle ABC$ be a triangle and let $ K$ be some point on the side $ AB$, so that the tangent line from $ K$ to the incircle of $ \triangle ABC$ intersects the ray $ AC$ at $ L$. Assume that $ \omega$ is tangent to sides $ AB$ and $ AC$, and to the circumcircle of $ \triangle AKL$. Prove that $ \omega$ is tangent to the circumcircle of $ \triangle ABC$ as well.

2019 Danube Mathematical Competition, 4

Let $ APD $ be an acute-angled triangle and let $ B,C $ be two points on the segments (excluding their endpoints) $ AP,PD, $ respectively. The diagonals of $ ABCD $ meet at $ Q. $ Denote by $ H_1,H_2 $ the orthocenters of $ APD,BPC, $ respectively. The circumcircles of $ ABQ $ and $ CDQ $ intersect at $ X\neq Q, $ and the circumcircles of $ ADQ,BCQ $ meet at $ Y\neq Q. $ Prove that if the line $ H_1H_2 $ passes through $ X, $ then it also passes through $ Y. $

2016 Regional Competition For Advanced Students, 4

Let $ABC$ be a triangle with $AC > AB$ and circumcenter $O$. The tangents to the circumcircle at $A$ and $B$ intersect at $T$. The perpendicular bisector of the side $BC$ intersects side $AC$ at $S$. (a) Prove that the points $A$, $B$, $O$, $S$, and $T$ lie on a common circle. (b) Prove that the line $ST$ is parallel to the side $BC$. (Karl Czakler)

2017 ELMO Shortlist, 1

Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$ [i]Proposed by Michael Ren[/i]

2023 Turkey Team Selection Test, 1

Let $ABCD$ be a trapezoid with $AB \parallel CD$. A point $T$ which is inside the trapezoid satisfies $ \angle ATD = \angle CTB$. Let line $AT$ intersects circumcircle of $ACD$ at $K$ and line $BT$ intersects circumcircle of $BCD$ at $L$.($K \neq A$ , $L \neq B$) Prove that $KL \parallel AB$.

The Golden Digits 2024, P3

Let $ABC$ be a scalene acute triangle with incenter $I$ and circumcircle $\Omega$. $M$ is the midpoint of small arc $BC$ on$\Omega$ and $N$ is the projection of $I$ onto the line passing through the midpoints of $AB$ and $AC$. A circle $\omega$ with center $Q$ is internally tangent to $\Omega$ at $A$, and touches segment $BC$. If the circle with diameter $IM$ meets $\Omega$ again at $J$, prove that $JI$ bisects $\angle QJN$. [i]Proposed by David Anghel[/i]

2000 China National Olympiad, 1

The sides $a,b,c$ of triangle $ABC$ satisfy $a\le b\le c$. The circumradius and inradius of triangle $ABC$ are $R$ and $r$ respectively. Let $f=a+b-2R-2r$. Determine the sign of $f$ by the measure of angle $C$.

2000 Federal Competition For Advanced Students, Part 2, 1

In a non-equilateral acute-angled triangle $ABC$ with $\angle C = 60^\circ$, $U$ is the circumcenter, $H$ the orthocenter and $D$ the intersection of $AH$ and $BC$. Prove that the Euler line $HU$ bisects the angle $BHD$.

2009 AIME Problems, 5

Equilateral triangle $ T$ is inscribed in circle $ A$, which has radius $ 10$. Circle $ B$ with radius $ 3$ is internally tangent to circle $ A$ at one vertex of $ T$. Circles $ C$ and $ D$, both with radius $ 2$, are internally tangent to circle $ A$ at the other two vertices of $ T$. Circles $ B$, $ C$, and $ D$ are all externally tangent to circle $ E$, which has radius $ \frac {m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$. [asy]unitsize(2.2mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair A=(0,0), D=8*dir(330), C=8*dir(210), B=7*dir(90); pair Ep=(0,4-27/5); pair[] dotted={A,B,C,D,Ep}; draw(Circle(A,10)); draw(Circle(B,3)); draw(Circle(C,2)); draw(Circle(D,2)); draw(Circle(Ep,27/5)); dot(dotted); label("$E$",Ep,E); label("$A$",A,W); label("$B$",B,W); label("$C$",C,W); label("$D$",D,E);[/asy]

2024 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ be a triangle, $H$ its orthocenter, and $\Gamma$ its circumcircle. Let $J$ be the point diametrically opposite to $A$ on $\Gamma$. The points $D$, $E$ and $F$ are the feet of the altitudes from $A$, $B$ and $C$, respectively. The line $AD$ intersects $\Gamma$ again at $P$. The circumcircle of $EFP$ intersects $\Gamma$ again at $Q$. Let $K$ be the second point of intersection of $JH$ with $\Gamma$. Prove that $K$, $D$ and $Q$ are collinear.