This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2009 Macedonia National Olympiad, 2

Let $O$ be the centre of the incircle of $\triangle ABC$. Points $K,L$ are the intersection points of the circles circumscribed about triangles $BOC,AOC$ respectively with the bisectors of the angles at $A,B$ respectively $(K,L\not= O)$. Also $P$ is the midpoint of segment $KL$, $M$ is the reflection of $O$ with respect to $P$ and $N$ is the reflection of $O$ with respect to line $KL$. Prove that the points $K,L,M$ and $N$ lie on the same circle.

2008 Greece Team Selection Test, 2

The bisectors of the angles $\angle{A},\angle{B},\angle{C}$ of a triangle $\triangle{ABC}$ intersect with the circumcircle $c_1(O,R)$ of $\triangle{ABC}$ at $A_2,B_2,C_2$ respectively.The tangents of $c_1$ at $A_2,B_2,C_2$ intersect each other at $A_3,B_3,C_3$ (the points $A_3,A$ lie on the same side of $BC$,the points $B_3,B$ on the same side of $CA$,and $C_3,C$ on the same side of $AB$).The incircle $c_2(I,r)$ of $\triangle{ABC}$ is tangent to $BC,CA,AB$ at $A_1,B_1,C_1$ respectively.Prove that $A_1A_2,B_1B_2,C_1C_2,AA_3,BB_3,CC_3$ are concurrent. [hide=Diagram][asy]import graph; size(11cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -9.26871978147865, xmax = 19.467150423463277, ymin = -6.150626456647122, ymax = 10.10782642246474; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); draw((1.0409487561836381,4.30054785243355)--(0.,0.)--(6.,0.)--cycle, aqaqaq); /* draw figures */ draw((1.0409487561836381,4.30054785243355)--(0.,0.), uququq); draw((0.,0.)--(6.,0.), uququq); draw((6.,0.)--(1.0409487561836381,4.30054785243355), uququq); draw(circle((3.,1.550104087253063), 3.376806580383107)); draw(circle((1.9303371951242874,1.5188413314630436), 1.5188413314630436)); draw((1.0226422135625703,7.734611112525813)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((-1.2916762981259242,-1.8267024931300444)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((-0.2820306621765219,2.344520485530311)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((1.0559139088339535,1.4932847901569466)--(5.212367857300808,4.101231513568902), linetype("2 2")); draw((1.0559139088339535,1.4932847901569466)--(3.,-1.8267024931300442), linetype("2 2")); draw((12.047991949367804,-1.8267024931300444)--(1.0559139088339535,1.4932847901569466), linetype("2 2")); draw((1.0226422135625703,7.734611112525813)--(-1.2916762981259242,-1.8267024931300444)); draw((-1.2916762981259242,-1.8267024931300444)--(12.047991949367804,-1.8267024931300444)); draw((12.047991949367804,-1.8267024931300444)--(1.0226422135625703,7.734611112525813)); /* dots and labels */ dot((1.0409487561836381,4.30054785243355),linewidth(3.pt) + dotstyle); label("$A$", (0.5889800538632699,4.463280489351154), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.5723380089304358,-0.10096957139619551), NE * labelscalefactor); dot((6.,0.),linewidth(3.pt) + dotstyle); label("$C$", (6.233525986976863,0.06107480945873997), NE * labelscalefactor); label("$c_1$", (1.9663572911302232,5.111458012770896), NE * labelscalefactor); dot((3.,-1.8267024931300442),linewidth(3.pt) + dotstyle); label("$A_2$", (2.9386235762598374,-2.3155761097469805), NE * labelscalefactor); dot((5.212367857300808,4.101231513568902),linewidth(3.pt) + dotstyle); label("$B_2$", (5.315274495465561,4.274228711687063), NE * labelscalefactor); dot((-0.2820306621765219,2.344520485530311),linewidth(3.pt) + dotstyle); label("$C_2$", (-0.9234341674494632,2.6807922999468636), NE * labelscalefactor); dot((1.0226422135625703,7.734611112525813),linewidth(3.pt) + dotstyle); label("$A_3$", (1.1291279900463889,7.893219884113956), NE * labelscalefactor); dot((-1.2916762981259242,-1.8267024931300444),linewidth(3.pt) + dotstyle); label("$B_3$", (-1.8146782621516093,-1.4783468086631473), NE * labelscalefactor); dot((12.047991949367804,-1.8267024931300444),linewidth(3.pt) + dotstyle); label("$C_3$", (12.148145888182015,-1.6673985863272387), NE * labelscalefactor); dot((1.9303371951242874,1.5188413314630436),linewidth(3.pt) + dotstyle); label("$I$", (2.047379481557691,1.681518618008095), NE * labelscalefactor); dot((1.9303371951242878,0.),linewidth(3.pt) + dotstyle); label("$A_1$", (1.4532167517562602,-0.5600953171518461), NE * labelscalefactor); label("$c_2$", (1.5072315453745722,3.247947632939138), NE * labelscalefactor); dot((2.9254299438737803,2.666303492733126),linewidth(3.pt) + dotstyle); label("$B_1$", (2.8576013858323694,3.1129106488933584), NE * labelscalefactor); dot((0.45412477306806903,1.8761589424582812),linewidth(3.pt) + dotstyle); label("$C_1$", (0,2.3296961414278368), NE * labelscalefactor); dot((1.0559139088339535,1.4932847901569466),linewidth(3.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/hide]

2005 Canada National Olympiad, 4

Let $ ABC$ be a triangle with circumradius $ R$, perimeter $ P$ and area $ K$. Determine the maximum value of: $ \frac{KP}{R^3}$.

2002 JBMO ShortLists, 10

Let $ ABC$ be a triangle with area $ S$ and points $ D,E,F$ on the sides $ BC,CA,AB$. Perpendiculars at points $ D,E,F$ to the $ BC,CA,AB$ cut circumcircle of the triangle $ ABC$ at points $ (D_1,D_2), (E_1,E_2), (F_1,F_2)$. Prove that: $ |D_1B\cdot D_1C \minus{} D_2B\cdot D_2C| \plus{} |E_1A\cdot E_1C \minus{} E_2A\cdot E_2C| \plus{} |F_1B\cdot F_1A \minus{} F_2B\cdot F_2A| > 4S$

1994 Vietnam National Olympiad, 2

$ABC$ is a triangle. Reflect each vertex in the opposite side to get the triangle $A'B'C'$. Find a necessary and sufficient condition on $ABC$ for $A'B'C'$ to be equilateral.

2001 Bundeswettbewerb Mathematik, 3

Let $ ABC$ an acute triangle with circumcircle center $ O.$ The line $ (BO)$ intersects the circumcircle again in $ D,$ and the extension of the altitude from $ A$ intersects the circle in $ E.$ Prove that the quadrilateral $ BECD$ and the triangle $ ABC$ have the same area.

2011 Korea - Final Round, 2

$ABC$ is an acute triangle. $P$(different from $B,C$) is a point on side $BC$. $H$ is an orthocenter, and $D$ is a foot of perpendicular from $H$ to $AP$. The circumcircle of the triangle $ABD$ and $ACD$ is $O _1$ and $O_2$, respectively. A line $l$ parallel to $BC$ passes $D$ and meet $O_1$ and $O_2$ again at $X$ and $Y$, respectively. $l$ meets $AB$ at $E$, and $AC$ at $F$. Two lines $XB$ and $YC$ intersect at $Z$. Prove that $ZE=ZF$ is a necessary and sufficient condition for $BP=CP$.

2007 Germany Team Selection Test, 3

In triangle $ ABC$ we have $ a \geq b$ and $ a \geq c.$ Prove that the ratio of circumcircle radius to incircle diameter is at least as big as the length of the centroidal axis $ s_a$ to the altitude $ a_a.$ When do we have equality?

Estonia Open Junior - geometry, 2015.2.5

Let $ABC$ be an acute-angled triangle, $H$ the intersection point of its altitudes , and $AA'$ the diameter of the circumcircle of triangle $ABC$. Prove that the quadrilateral $HB A'C$ is a parallelogram.

Geometry Mathley 2011-12, 3.1

$AB,AC$ are tangent to a circle $(O)$, $B,C$ are the points of tangency. $Q$ is a point iside the angle $BAC$, on the ray $AQ$, take a point $P$ suc that $OP$ is perpendicular to $AQ$. The line $OP$ meets the circumcircles triangles $BPQ$ and $CPQ$ at $I, J$. Prove that $OI = OJ$. Hồ Quang Vinh

Brazil L2 Finals (OBM) - geometry, 2013.3

Let $ABC$ a triangle. Let $D$ be a point on the circumcircle of this triangle and let $E , F$ be the feet of the perpendiculars from $A$ on $DB, DC$, respectively. Finally, let $N$ be the midpoint of $EF$. Let $M \ne N$ be the midpoint of the side $BC$ . Prove that the lines $NA$ and $NM$ are perpendicular.

2011 IMO Shortlist, 5

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. Let $D$ and $E$ be the second intersection points of $\omega$ with $AI$ and $BI$, respectively. The chord $DE$ meets $AC$ at a point $F$, and $BC$ at a point $G$. Let $P$ be the intersection point of the line through $F$ parallel to $AD$ and the line through $G$ parallel to $BE$. Suppose that the tangents to $\omega$ at $A$ and $B$ meet at a point $K$. Prove that the three lines $AE,BD$ and $KP$ are either parallel or concurrent. [i]Proposed by Irena Majcen and Kris Stopar, Slovenia[/i]

1970 IMO Longlists, 21

In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$

2000 Belarus Team Selection Test, 7.2

Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

2004 Nordic, 4

Let $a, b, c$ be the sides and $R$ be the circumradius of a triangle. Prove that \[\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{R^2}.\]

2007 Turkey Team Selection Test, 1

[color=indigo]Let $ABC$ is an acute angled triangle and let $A_{1},\, B_{1},\, C_{1}$ are points respectively on $BC,\,CA,\,AB$ such that $\triangle ABC$ is similar to $\triangle A_{1}B_{1}C_{1}.$ Prove that orthocenter of $A_{1}B_{1}C_{1}$ coincides with circumcenter of $ABC$.[/color]

Kyiv City MO Seniors 2003+ geometry, 2022.11.3

Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$. [i](Proposed by Oleksii Masalitin)[/i]

2016 Balkan MO Shortlist, G3

Given that $ABC$ is a triangle where $AB < AC$. On the half-lines $BA$ and $CA$ we take points $F$ and $E$ respectively such that $BF = CE = BC$. Let $M,N$ and $H$ be the mid-points of the segments $BF,CE$ and $BC$ respectively and $K$ and $O$ be the circumcenters of the triangles $ABC$ and $MNH$ respectively. We assume that $OK$ cuts $BE$ and $HN$ at the points $A_1$ and $B_1$ respectively and that $C_1$ is the point of intersection of $HN$ and $FE$. If the parallel line from $A_1$ to $OC_1$ cuts the line $FE$ at $D$ and the perpendicular from $A_1$ to the line $DB_1$ cuts $FE$ at the point $M_1$, prove that $E$ is the orthocenter of the triangle $A_1OM_1$.

2012 Romanian Master of Mathematics, 6

Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$. [i](Russia) Fedor Ivlev[/i]

2010 BMO TST, 3

Let $ K$ be the circumscribed circle of the trapezoid $ ABCD$ . In this trapezoid the diagonals $ AC$ and $ BD$ are perpendicular. The parallel sides $ AB\equal{}a$ and $ CD\equal{}c$ are diameters of the circles $ K_{a}$ and $ K_{b}$ respectively. Find the perimeter and the area of the part inside the circle $ K$, that is outside circles $ K_{a}$ and $ K_{b}$.

2010 ELMO Shortlist, 3

A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$. [i]Evan O' Dorney.[/i]

2000 Vietnam Team Selection Test, 1

Two circles $C_{1}$ and $C_{2}$ intersect at points $P$ and $Q$. Their common tangent, closer to $P$ than to $Q$, touches $C_{1}$ at $A$ and $C_{2}$ at $B$. The tangents to $C_{1}$ and $C_{2}$ at $P$ meet the other circle at points $E \not = P$ and $F \not = P$ , respectively. Let $H$ and $K$ be the points on the rays $AF$ and $BE$ respectively such that $AH = AP$ and $BK = BP$ . Prove that $A,H,Q,K,B$ lie on a circle.

2013 China Team Selection Test, 2

The circumcircle of triangle $ABC$ has centre $O$. $P$ is the midpoint of $\widehat{BAC}$ and $QP$ is the diameter. Let $I$ be the incentre of $\triangle ABC$ and let $D$ be the intersection of $PI$ and $BC$. The circumcircle of $\triangle AID$ and the extension of $PA$ meet at $F$. The point $E$ lies on the line segment $PD$ such that $DE=DQ$. Let $R,r$ be the radius of the inscribed circle and circumcircle of $\triangle ABC$, respectively. Show that if $\angle AEF=\angle APE$, then $\sin^2\angle BAC=\dfrac{2r}R$

2009 India IMO Training Camp, 1

Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$, $ r$ being inradius.

2016 Hong Kong TST, 2

Suppose that $I$ is the incenter of triangle $ABC$. The perpendicular to line $AI$ from point $I$ intersects sides $AC$ and $AB$ at points $B'$ and $C'$ respectively. Points $B_1$ and $C_1$ are placed on half lines $BC$ and $CB$ respectively, in such a way that $AB=BB_1$ and $AC=CC_1$. If $T$ is the second intersection point of the circumcircles of triangles $AB_1C'$ and $AC_1B'$, prove that the circumcenter of triangle $ATI$ lies on the line $BC$