This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2015 Vietnam National Olympiad, 4

Given a circumcircle $(O)$ and two fixed points $B,C$ on $(O)$. $BC$ is not the diameter of $(O)$. A point $A$ varies on $(O)$ such that $ABC$ is an acute triangle. $E,F$ is the foot of the altitude from $B,C$ respectively of $ABC$. $(I)$ is a variable circumcircle going through $E$ and $F$ with center $I$. a) Assume that $(I)$ touches $BC$ at $D$. Probe that $\frac{DB}{DC}=\sqrt{\frac{\cot B}{\cot C}}$. b) Assume $(I)$ intersects $BC$ at $M$ and $N$. Let $H$ be the orthocenter and $P,Q$ be the intersections of $(I)$ and $(HBC)$. The circumcircle $(K)$ going through $P,Q$ and touches $(O)$ at $T$ ($T$ is on the same side with $A$ wrt $PQ$). Prove that the interior angle bisector of $\angle{MTN}$ passes through a fixed point.

1992 Baltic Way, 18

Show that in a non-obtuse triangle the perimeter of the triangle is always greater than two times the diameter of the circumcircle.

2014 Harvard-MIT Mathematics Tournament, 8

Let $ABC$ be a triangle with sides $AB = 6$, $BC = 10$, and $CA = 8$. Let $M$ and $N$ be the midpoints of $BA$ and $BC$, respectively. Choose the point $Y$ on ray $CM$ so that the circumcircle of triangle $AMY$ is tangent to $AN$. Find the area of triangle $NAY$.

2017 Hong Kong TST, 2

Let $ABCDEF$ be a convex hexagon such that $\angle ACE = \angle BDF$ and $\angle BCA = \angle EDF$. Let $A_1=AC\cap FB$, $B_1=BD\cap AC$, $C_1=CE\cap BD$, $D_1=DF\cap CE$, $E_1=EA\cap DF$, and $F_1=FB\cap EA$. Suppose $B_1, C_1, D_1, F_1$ lie on the same circle $\Gamma$. The circumcircles of $\triangle BB_1F_1$ and $ED_1F_1$ meet at $F_1$ and $P$. The line $F_1P$ meets $\Gamma$ again at $Q$. Prove that $B_1D_1$ and $QC_1$ are parrallel. (Here, we use $l_1\cap l_2$ to denote the intersection point of lines $l_1$ and $l_2$)

2018 Mexico National Olympiad, 6

Let $ABC$ be an acute-angled triangle with circumference $\Omega$. Let the angle bisectors of $\angle B$ and $\angle C$ intersect $\Omega$ again at $M$ and $N$. Let $I$ be the intersection point of these angle bisectors. Let $M'$ and $N'$ be the respective reflections of $M$ and $N$ in $AC$ and $AB$. Prove that the center of the circle passing through $I$, $M'$, $N'$ lies on the altitude of triangle $ABC$ from $A$. [i]Proposed by Victor Domínguez and Ariel García[/i]

2005 China Western Mathematical Olympiad, 5

Circles $C(O_1)$ and $C(O_2)$ intersect at points $A$, $B$. $CD$ passing through point $O_1$ intersects $C(O_1)$ at point $D$ and tangents $C(O_2)$ at point $C$. $AC$ tangents $C(O_1)$ at $A$. Draw $AE \bot CD$, and $AE$ intersects $C(O_1)$ at $E$. Draw $AF \bot DE$, and $AF$ intersects $DE$ at $F$. Prove that $BD$ bisects $AF$.

2018 Czech-Polish-Slovak Junior Match, 5

An acute triangle $ABC$ is given in which $AB <AC$. Point $E$ lies on the $AC$ side of the triangle, with $AB = AE$. The segment $AD$ is the diameter of the circumcircle of the triangle $ABC$, and point $S$ is the center of this arc $BC$ of this circle to which point $A$ does not belong. Point $F$ is symmetric of point $D$ wrt $S$. Prove that lines $F E$ and $AC$ are perpendicular.

2025 Turkey Team Selection Test, 7

Let $\omega$ be a circle on the plane. Let $\omega_1$ and $\omega_2$ be circles which are internally tangent to $\omega$ at points $A$ and $B$ respectively. Let the centers of $\omega_1$ and $\omega_2$ be $O_1$ and $O_2$ respectively and let the intersection points of $\omega_1$ and $\omega_2$ be $X$ and $Y$. Assume that $X$ lies on the line $AB$. Let the common external tangent of $\omega_1$ and $\omega_2$ that is closer to point $Y$ be tangent to the circles $\omega_1$ and $\omega_2$ at $K$ and $L$ respectively. Let the second intersection point of the line $AK$ and $\omega$ be $P$ and let the second intersection point of the circumcircle of $PKL$ and $\omega$ be $S$. Let the circumcenter of $AKL$ be $Q$ and let the intersection points of $SQ$ and $O_1O_2$ be $R$. Prove that $$\frac{\overline{O_1R}}{\overline{RO_2}}=\frac{\overline{AX}}{\overline{XB}}$$

2007 Baltic Way, 12

Let $M$ be a point on the arc $AB$ of the circumcircle of the triangle $ABC$ which does not contain $C$. Suppose that the projections of $M$ onto the lines $AB$ and $BC$ lie on the sides themselves, not on their extensions. Denote these projections by $X$ and $Y$, respectively. Let $K$ and $N$ be the midpoints of $AC$ and $XY$, respectively. Prove that $\angle MNK=90^{\circ}$ .

Geometry Mathley 2011-12, 15.1

Let $ABC$ be a non-isosceles triangle. The incircle $(I)$ of the triangle touches sides $BC,CA,AB$ at $A_0,B_0$, and $C_0$. Points $A_1,B_1$, and $C_1$ are on $BC,CA,AB$ such that $BA1 = CA_0, CB_1 = AB_0, AC_1 = BC_0$. Prove that the circumcircles $(IAA1), (IBB_1), (ICC_1)$ pass all through a common point, distinct from $I$. Nguyễn Minh Hà

2008 Tournament Of Towns, 7

Each of three lines cuts chords of equal lengths in two given circles. The points of intersection of these lines form a triangle. Prove that its circumcircle passes through the midpoint of the segment joining the centres of the circles.

2000 France Team Selection Test, 1

Points $P,Q,R,S$ lie on a circle and $\angle PSR$ is right. $H,K$ are the projections of $Q$ on lines $PR,PS$. Prove that $HK$ bisects segment $ QS$.

2011 Tuymaada Olympiad, 3

An excircle of triangle $ABC$ touches the side $AB$ at $P$ and the extensions of sides $AC$ and $BC$ at $Q$ and $R$, respectively. Prove that if the midpoint of $PQ$ lies on the circumcircle of $ABC$, then the midpoint of $PR$ also lies on that circumcircle.

2020 Ukrainian Geometry Olympiad - December, 3

On the sides $AB$ and $AC$ of a triangle $ABC$ select points $D$ and $E$ respectively, such that $AB = 6$, $AC = 9$, $AD = 4$ and $AE = 6$. It is known that the circumscribed circle of $\vartriangle ADE$ interects the side $BC$ at points $F, G$ , where $BF < BG$. Knowing that the point of intersection of lines $DF$ and $EG$ lies on the circumscribed circle of $\vartriangle ABC$ , find the ratio $BC:FG$.

2014 PUMaC Team, 2

Given a Pacman of radius $1$, and mouth opening angle $90^\circ$, what is the largest (circular) pellet it can eat? The pellet must lie entirely outside the yellow portion and entirely inside the circumcircle of the Pacman. Let the radius be equal to $a\sqrt b+c$. where $b$ is square free. Find $a+b+c$.

2014 NIMO Problems, 14

Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$. Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]

2009 CHKMO, 3

$ \Delta ABC$ is a triangle such that $ AB \neq AC$. The incircle of $ \Delta ABC$ touches $ BC, CA, AB$ at $ D, E, F$ respectively. $ H$ is a point on the segment $ EF$ such that $ DH \bot EF$. Suppose $ AH \bot BC$, prove that $ H$ is the orthocentre of $ \Delta ABC$. Remark: the original question has missed the condition $ AB \neq AC$

2011 Dutch BxMO TST, 2

In an acute triangle $ABC$ the angle $\angle C$ is greater than $\angle A$. Let $E$ be such that $AE$ is a diameter of the circumscribed circle $\Gamma$ of \vartriangle ABC. Let $K$ be the intersection of $AC$ and the tangent line at $B$ to $\Gamma$. Let $L$ be the orthogonal projection of $K$ on $AE$ and let $D$ be the intersection of $KL$ and $AB$. Prove that $CE$ is the bisector of $\angle BCD$.

2016 India Regional Mathematical Olympiad, 5

Let $ABC$ be a triangle with centroid $G$. Let the circumcircle of triangle $AGB$ intersect the line $BC$ in $X$ different from $B$; and the circucircle of triangle $AGC$ intersect the line $BC$ in $Y$ different from $C$. Prove that $G$ is the centroid of triangle $AXY$.

2002 USA Team Selection Test, 5

Consider the family of nonisosceles triangles $ABC$ satisfying the property $AC^2 + BC^2 = 2 AB^2$. Points $M$ and $D$ lie on side $AB$ such that $AM = BM$ and $\angle ACD = \angle BCD$. Point $E$ is in the plane such that $D$ is the incenter of triangle $CEM$. Prove that exactly one of the ratios \[ \frac{CE}{EM}, \quad \frac{EM}{MC}, \quad \frac{MC}{CE} \] is constant.

2021 Moldova EGMO TST, 7

A triangle $ABC$ has the orthocenter $H$ different from the vertexes and the circumcenter $O$. Let $M, N$ and $P$ be the circumcenters of triangles $HBC, HCA$ and $HAB$. Prove that the lines $AM, BN, CP$ and $OH$ are concurrent.

2006 Germany Team Selection Test, 2

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2004 Germany Team Selection Test, 2

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

2008 Serbia National Math Olympiad, 4

Each point of a plane is painted in one of three colors. Show that there exists a triangle such that: $ (i)$ all three vertices of the triangle are of the same color; $ (ii)$ the radius of the circumcircle of the triangle is $ 2008$; $ (iii)$ one angle of the triangle is either two or three times greater than one of the other two angles.

JBMO Geometry Collection, 2002

The triangle $ABC$ has $CA = CB$. $P$ is a point on the circumcircle between $A$ and $B$ (and on the opposite side of the line $AB$ to $C$). $D$ is the foot of the perpendicular from $C$ to $PB$. Show that $PA + PB = 2 \cdot PD$.