Found problems: 3882
2012 ELMO Shortlist, 10
Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a cyclic octagon. Let $B_i$ by the intersection of $A_iA_{i+1}$ and $A_{i+3}A_{i+4}$. (Take $A_9 = A_1$, $A_{10} = A_2$, etc.) Prove that $B_1, B_2, \ldots , B_8$ lie on a conic.
[i]David Yang.[/i]
2013 USA Team Selection Test, 2
Let $ABC$ to be an acute triangle. Also, let $K$ and $L$ to be the two intersections of the perpendicular from $B$ with respect to side $AC$ with the circle of diameter $AC$, with $K$ closer to $B$ than $L$. Analogously, $X$ and $Y$ are the two intersections of the perpendicular from $C$ with respect to side $AB$ with the circle of diamter $AB$, with $X$ closer to $C$ than $Y$. Prove that the intersection of $XL$ and $KY$ lies on $BC$.
2014 CHKMO, 4
Let $\triangle ABC$ be a scalene triangle, and let $D$ and $E$ be points on sides $AB$ and $AC$ respectively such that the circumcircles of triangles $\triangle ACD$ and $\triangle ABE$ are tangent to $BC$. Let $F$ be the intersection point of $BC$ and $DE$. Prove that $AF$ is perpendicular to the Euler line of $\triangle ABC$.
2010 Greece Team Selection Test, 3
Let $ABC$ be a triangle,$O$ its circumcenter and $R$ the radius of its circumcircle.Denote by $O_{1}$ the symmetric of $O$ with respect to $BC$,$O_{2}$ the symmetric of $O$ with respect to $AC$ and by $O_{3}$ the symmetric of $O$ with respect to $AB$.
(a)Prove that the circles $C_{1}(O_{1},R)$, $C_{2}(O_{2},R)$, $C_{3}(O_{3},R)$ have a common point.
(b)Denote by $T$ this point.Let $l$ be an arbitary line passing through $T$ which intersects $C_{1}$ at $L$, $C_{2}$ at $M$ and $C_{3}$ at $K$.From $K,L,M$ drop perpendiculars to $AB,BC,AC$ respectively.Prove that these perpendiculars pass through a point.
2025 Thailand Mathematical Olympiad, 7
Let $ABC$ be a triangle with $AB < AC$. The tangent to the circumcircle of $\triangle ABC$ at $A$ intersects $BC$ at $D$. The angle bisector of $\angle BAC$ intersect $BC$ at $E$. Suppose that the perpendicular bisector of $AE$ intersect $AB, AC$ at $P,Q$, respectively. Show that $$\sqrt{\frac{BP}{CQ}} = \frac{AC \cdot BD}{AB \cdot CD}$$
JBMO Geometry Collection, 2013
Let $ABC$ be an acute-angled triangle with $AB<AC$ and let $O$ be the centre of its circumcircle $\omega$. Let $D$ be a point on the line segment $BC$ such that $\angle BAD = \angle CAO$. Let $E$ be the second point of intersection of $\omega$ and the line $AD$. If $M$, $N$ and $P$ are the midpoints of the line segments $BE$, $OD$ and $AC$, respectively, show that the points $M$, $N$ and $P$ are collinear.
2006 Switzerland Team Selection Test, 3
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
2018 Sharygin Geometry Olympiad, 2
A rectangle $ABCD$ and its circumcircle are given. Let $E$ be an arbitrary point on the minor arc $BC$. The tangent to the circle at $B$ meets $CE$ at point $G$. The segments $AE$ and $BD$ meet at point $K$. Prove that $GK$ and $AD$ are perpendicular.
2013 International Zhautykov Olympiad, 1
Given a trapezoid $ABCD$ ($AD \parallel BC$) with $\angle ABC > 90^\circ$ . Point $M$ is chosen on the lateral side $AB$. Let $O_1$ and $O_2$ be the circumcenters of the triangles $MAD$ and $MBC$, respectively. The circumcircles of the triangles $MO_1D$ and $MO_2C$ meet again at the point $N$. Prove that the line $O_1O_2$ passes through the point $N$.
1990 IMO Longlists, 96
Suppose that points $X, Y,Z$ are located on sides $BC, CA$, and $AB$, respectively, of triangle $ABC$ in such a way that triangle $XY Z$ is similar to triangle $ABC$. Prove that the orthocenter of triangle $XY Z$ is the circumcenter of triangle $ABC.$
2014 Baltic Way, 13
Let $ABCD$ be a square inscribed in a circle $\omega$ and let $P$ be a point on the shorter arc $AB$ of $\omega$. Let $CP\cap BD = R$ and $DP \cap AC = S.$
Show that triangles $ARB$ and $DSR$ have equal areas.
2014 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, the perpendicular bisectors of sides $AB$ and $BC$ intersect side $AC$ at points $P$ and $Q$, respectively, with point $P$ lying on the segment $AQ$. Prove that the circumscribed circles of the triangles $PBC$ and $QBA$ intersect on the bisector of the angle $PBQ$.
2007 Bulgaria National Olympiad, 1
The quadrilateral $ABCD$, where $\angle BAD+\angle ADC>\pi$, is inscribed a circle with centre $I$. A line through $I$ intersects $AB$ and $CD$ in points $X$ and $Y$ respectively such that $IX=IY$. Prove that $AX\cdot DY=BX\cdot CY$.
1999 Harvard-MIT Mathematics Tournament, 10
Let $A_n$ be the area outside a regular $n$-gon of side length $1$ but inside its circumscribed circle, let $B_n$ be the area inside the $n$-gon but outside its inscribed circle. Find the limit as $n$ tends to infinity of $\dfrac{A_n}{B_n}$.
2013 ITAMO, 5
$ABC$ is an isosceles triangle with $AB=AC$ and the angle in $A$ is less than $60^{\circ}$. Let $D$ be a point on $AC$ such that $\angle{DBC}=\angle{BAC}$. $E$ is the intersection between the perpendicular bisector of $BD$ and the line parallel to $BC$ passing through $A$. $F$ is a point on the line $AC$ such that $FA=2AC$ ($A$ is between $F$ and $C$).
Show that $EB$ and $AC$ are parallel and that the perpendicular from $F$ to $AB$, the perpendicular from $E$ to $AC$ and $BD$ are concurrent.
2014 ELMO Shortlist, 5
Let $P$ be a point in the interior of an acute triangle $ABC$, and let $Q$ be its isogonal conjugate. Denote by $\omega_P$ and $\omega_Q$ the circumcircles of triangles $BPC$ and $BQC$, respectively. Suppose the circle with diameter $\overline{AP}$ intersects $\omega_P$ again at $M$, and line $AM$ intersects $\omega_P$ again at $X$. Similarly, suppose the circle with diameter $\overline{AQ}$ intersects $\omega_Q$ again at $N$, and line $AN$ intersects $\omega_Q$ again at $Y$.
Prove that lines $MN$ and $XY$ are parallel.
(Here, the points $P$ and $Q$ are [i]isogonal conjugates[/i] with respect to $\triangle ABC$ if the internal angle bisectors of $\angle BAC$, $\angle CBA$, and $\angle ACB$ also bisect the angles $\angle PAQ$, $\angle PBQ$, and $\angle PCQ$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)
[i]Proposed by Sammy Luo[/i]
2003 France Team Selection Test, 1
Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.
2016 Canada National Olympiad, 5
Let $\triangle ABC$ be an acute-angled triangle with altitudes $AD$ and $BE$ meeting at $H$. Let $M$ be the midpoint of segment $AB$, and suppose that the circumcircles of $\triangle DEM$ and $\triangle ABH$ meet at points $P$ and $Q$ with $P$ on the same side of $CH$ as $A$. Prove that the lines $ED, PH,$ and $MQ$ all pass through a single point on the circumcircle of $\triangle ABC$.
1971 IMO Longlists, 20
Let $M$ be the circumcenter of a triangle $ABC.$ The line through $M$ perpendicular to $CM$ meets the lines $CA$ and $CB$ at $Q$ and $P,$ respectively. Prove that
\[\frac{\overline{CP}}{\overline{CM}} \cdot \frac{\overline{CQ}}{\overline{CM}}\cdot \frac{\overline{AB}}{\overline{PQ}}= 2.\]
2004 Iran MO (3rd Round), 16
Let $ABC$ be a triangle . Let point $X$ be in the triangle and $AX$ intersects $BC$ in $Y$ . Draw the perpendiculars $YP,YQ,YR,YS$ to lines $CA,CX,BX,BA$ respectively. Find the necessary and sufficient condition for $X$ such that $PQRS$ be cyclic .
Kharkiv City MO Seniors - geometry, 2016.10.3
Let $AD$ be the bisector of an acute-angled triangle $ABC$. The circle circumscribed around the triangle $ABD$ intersects the straight line perpendicular to $AD$ that passes through point $B$, at point $E$. Point $O$ is the center of the circumscribed circle of triangle $ABC$. Prove that the points $A, O, E$ lie on the same line.
2011 Sharygin Geometry Olympiad, 3
The line passing through vertex $A$ of triangle $ABC$ and parallel to $BC$ meets the circumcircle of $ABC$ for the second time at point $A_1$. Points $B_1$ and $C_1$ are defined similarly. Prove that the perpendiculars from $A_1, B_1, C_1$ to $BC, CA, AB$ respectively concur.
2002 IMO Shortlist, 3
The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$
2025 Iran MO (2nd Round), 4
Given is an acute and scalene triangle $ABC$ with circumcenter $O$. $BO$ and $CO$ intersect the altitude from $A$ to $BC$ at points $P$ and $Q$ respectively. $X$ is the circumcenter of triangle $OPQ$ and $O'$ is the reflection of $O$ over $BC$. $Y$ is the second intersection of circumcircles of triangles $BXP$ and $CXQ$. Show that $X,Y,O'$ are collinear.
2003 All-Russian Olympiad, 4
The inscribed sphere of a tetrahedron $ABCD$ touches $ABC,ABD,ACD$ and $BCD$ at $D_1,C_1,B_1$ and $A_1$ respectively. Consider the plane equidistant from $A$ and plane $B_1C_1D_1$ (parallel to $B_1C_1D_1$) and the three planes defined analogously for the vertices $B,C,D$. Prove that the circumcenter of the tetrahedron formed by these four planes coincides with the circumcenter of tetrahedron of $ABCD$.