Found problems: 478
2025 6th Memorial "Aleksandar Blazhevski-Cane", P4
Let $ABCDE$ be a pentagon such that $\angle DCB < 90^{\circ} < \angle EDC$. The circle with diameter $BD$ intersects the line $BC$ again at $F$, and the circle with diameter $DE$ intersects the line $CE$ again at $G$. Prove that the second intersection ($\neq D$) of the circumcircle of $\triangle DFG$ and the circle with diameter $AD$ lies on $AC$.
Proposed by [i]Petar Filipovski[/i]
2013 Switzerland - Final Round, 10
Let $ABCD$ be a tangential quadrilateral with $BC> BA$. The point $P$ is on the segment $BC$, such that $BP = BA$ . Show that the bisector of $\angle BCD$, the perpendicular on line $BC$ through $P$ and the perpendicular on $BD$ through $A$, intersect at one point.
2008 Greece Junior Math Olympiad, 4
Let $ABCD$ be a trapezoid with $AD=a, AB=2a, BC=3a$ and $\angle A=\angle B =90 ^o$. Let $E,Z$ be the midpoints of the sides $AB ,CD$ respectively and $I$ be the foot of the perpendicular from point $Z$ on $BC$. Prove that :
i) triangle $BDZ$ is isosceles
ii) midpoint $O$ of $EZ$ is the centroid of triangle $BDZ$
iii) lines $AZ$ and $DI$ intersect at a point lying on line $BO$
Champions Tournament Seniors - geometry, 2003.1
Consider the triangle $ABC$, in which $AB > AC$. Let $P$ and $Q$ be the feet of the perpendiculars dropped from the vertices $B$ and $C$ on the bisector of the angle $BAC$, respectively. On the line $BC$ note point $B$ such that $AD \perp AP.$ Prove that the lines $BQ, PC$ and $AD$ intersect at one point.
2004 Bulgaria Team Selection Test, 1
The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.
1976 Dutch Mathematical Olympiad, 2
Given $\vartriangle ABC$ and a point $P$ inside that triangle. The parallelograms $CPBL$, $APCM$ and $BPAN$ are constructed. Prove that $AL$, $BM$ and $CN$ pass through one point $S$, and that $S$ is the midpoint of $AL$, $BM$ and $CN$.
2017 Thailand TSTST, 1
In $\vartriangle ABC, D, E, F$ are the midpoints of $AB, BC, CA$ respectively. Denote by $O_A, O_B, O_C$ the incenters of $\vartriangle ADF, \vartriangle BED, \vartriangle CFE$ respectively. Prove that $O_AE, O_BF, O_CD$ are concurrent.
2005 China Team Selection Test, 1
Point $P$ lies inside triangle $ABC$. Let the projections of $P$ onto sides $BC$,$CA$,$AB$ be $D$, $E$, $F$ respectively. Let the projections from $A$ to the lines $BP$ and $CP$ be $M$ and $N$ respectively. Prove that $ME$, $NF$ and $BC$ are concurrent.
2001 All-Russian Olympiad Regional Round, 11.6
Prove that if two segments of a tetrahedron, going from the ends of some edge to the centers of the inscribed circles of opposite faces, intersect, then the segments issued from the ends of the crossing with it edges to the centers of the inscribed circles of the other two faces, also intersect.
2022 Dutch IMO TST, 2
Two circles $\Gamma_1$ and $\Gamma_2$are given with centres $O_1$ and $O_2$ and common exterior tangents $\ell_1$ and $\ell_2$. The line $\ell_1$ intersects $\Gamma_1$ in $A$ and $\Gamma_2$ in $B$. Let $X$ be a point on segment $O_1O_2$, not lying on $\Gamma_1$ or $\Gamma_2$. The segment $AX$ intersects $\Gamma_1$ in $Y \ne A$ and the segment $BX$ intersects $\Gamma_2$ in $Z \ne B$. Prove that the line through $Y$ tangent to $\Gamma_1$ and the line through $Z$ tangent to $\Gamma_2$ intersect each other on $\ell_2$.
2006 Sharygin Geometry Olympiad, 21
On the sides $AB, BC, CA$ of triangle $ABC$, points $C', A', B'$ are taken.
Prove that for the areas of the corresponding triangles, the inequality holds:
$$S_{ABC}S^2_{A'B'C'}\ge 4S_{AB'C'}S_{BC'A'}S_{CA'B'}$$
and equality is achieved if and only if the lines $AA', BB', CC'$ intersect at one point.
OIFMAT III 2013, 5
In an acute triangle $ ABC $ with circumcircle $ \Omega $ and circumcenter $ O $, the circle $ \Gamma $ is drawn, passing through the points $ A $, $ O $ and $ C $ together with its diameter $ OQ $, then the points $ M $ and $ N $ are chosen on the lines $ AQ $ and $ AC $, respectively, in such a way that the quadrilateral $ AMBN $ is a parallelogram.
Prove that the point of intersection of the lines $ MN $ and $ BQ $ lies on the circle $ \Gamma $.
2023 SG Originals, Q3
Let $\vartriangle ABC$ be a triangle with orthocenter $H$, and let $M$, $N$ be the midpoints of $BC$ and $AH$ respectively. Suppose $Q$ is a point on $(ABC)$ such that $\angle AQH = 90^o$. Show that $MN$, the circumcircle of $QNH$, and the $A$-symmedian concur.
Note: the $A$-symmedian is the reflection of line $AM$ in the bisector of angle $\angle BAC$.
1990 All Soviet Union Mathematical Olympiad, 521
$ABCD$ is a convex quadrilateral. $X$ is a point on the side $AB. AC$ and $DX$ intersect at $Y$. Show that the circumcircles of $ABC, CDY$ and $BDX$ have a common point.
1996 IMO Shortlist, 2
Let $ P$ be a point inside a triangle $ ABC$ such that
\[ \angle APB \minus{} \angle ACB \equal{} \angle APC \minus{} \angle ABC.
\]
Let $ D$, $ E$ be the incenters of triangles $ APB$, $ APC$, respectively. Show that the lines $ AP$, $ BD$, $ CE$ meet at a point.
2014 Indonesia MO Shortlist, G4
Given an acute triangle $ABC$ with $AB <AC$. Points $P$ and $Q$ lie on the angle bisector of $\angle BAC$ so that $BP$ and $CQ$ are perpendicular on that angle bisector. Suppose that point $E, F$ lie respectively at sides $AB$ and $AC$ respectively, in such a way that $AEPF$ is a kite. Prove that the lines $BC, PF$, and $QE$ intersect at one point.
2022 Oral Moscow Geometry Olympiad, 6
In a tetrahedron, segments connecting the midpoints of heights with the orthocenters of the faces to which these heights are drawn intersect at one point. Prove that in such a tetrahedron all faces are equal or there are perpendicular edges.
(Yu. Blinkov)
2016 Saint Petersburg Mathematical Olympiad, 3
In a tetrahedron, the midpoints of all the edges lie on the same sphere. Prove that it's altitudes intersect at one point.
2013 Balkan MO Shortlist, G4
Let $c(O, R)$ be a circle, $AB$ a diameter and $C$ an arbitrary point on the circle different than $A$ and $B$ such that $\angle AOC > 90^o$. On the radius $OC$ we consider point $K$ and the circle $c_1(K, KC)$. The extension of the segment $KB$ meets the circle $(c)$ at point $E$. From $E$ we consider the tangents $ES$ and $ET$ to the circle $(c_1)$. Prove that the lines $BE, ST$ and $AC$ are concurrent.
1997 Estonia Team Selection Test, 1
In a triangle $ABC$ points $A_1,B_1,C_1$ are the midpoints of $BC,CA,AB$ respectively,and $A_2,B_2,C_2$ are the midpoints of the altitudes from $A,B,C$ respectively. Show that the lines $A_1A_2,B_1B_2,C_1,C_2$ are concurrent.
2014 Sharygin Geometry Olympiad, 7
Nine circles are drawn around an arbitrary triangle as in the figure. All circles tangent to the same side of the triangle have equal radii. Three lines are drawn, each one connecting one of the triangle’s vertices to the center of one of the circles touching the opposite side, as in the figure. Show that the three lines are concurrent.
(N. Beluhov)
2006 Sharygin Geometry Olympiad, 11
In the triangle $ABC, O$ is the center of the circumscribed circle, $A ', B', C '$ are the symmetrics of $A, B, C$ with respect to opposite sides, $ A_1, B_1, C_1$ are the intersection points of the lines $OA'$ and $BC, OB'$ and $AC, OC'$ and $AB$. Prove that the lines $A A_1, BB_1, CC_1$ intersect at one point.
2022 Novosibirsk Oral Olympiad in Geometry, 7
The diagonals of the convex quadrilateral $ABCD$ intersect at the point $O$. The points $X$ and $Y$ are symmetrical to the point $O$ with respect to the midpoints of the sides $BC$ and $AD$, respectively. It is known that $AB = BC = CD$. Prove that the point of intersection of the perpendicular bisectors of the diagonals of the quadrilateral lies on the line $XY$.
Geometry Mathley 2011-12, 3.3
A triangle $ABC$ is inscribed in circle $(O)$. $P1, P2$ are two points in the plane of the triangle. $P_1A, P_1B, P_1C$ meet $(O)$ again at $A_1,B_1,C_1$ . $P_2A, P_2B, P_2C$ meet $(O)$ again at $A_2,B_2,C_2$.
a) $A_1A_2, B_1B_2, C_1C_2$ intersect $BC,CA,AB$ at $A_3,B_3,C_3$. Prove that three points $A_3,B_3,C_3$ are collinear.
b) $P$ is a point on the line $P_1P_2. A_1P,B_1P,C_1P$ meet (O) again at $A_4,B_4,C_4$. Prove that three lines $A_2A_4,B_2B_4,C_2C_4$ are concurrent.
Trần Quang Hùng
2022 Greece National Olympiad, 1
Let $ABC$ be a triangle such that $AB<AC<BC$. Let $D,E$ be points on the segment $BC$ such that $BD=BA$ and $CE=CA$. If $K$ is the circumcenter of triangle $ADE$, $F$ is the intersection of lines $AD,KC$ and $G$ is the intersection of lines $AE,KB$, then prove that the circumcircle of triangle $KDE$ (let it be $c_1$), the circle with center the point $F$ and radius $FE$ (let it be $c_2$) and the circle with center $G$ and radius $GD$ (let it be $c_3$) concur on a point which lies on the line $AK$.