This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 478

2014 Abels Math Contest (Norwegian MO) Final, 2

The points $P$ and $Q$ lie on the sides $BC$ and $CD$ of the parallelogram $ABCD$ so that $BP = QD$. Show that the intersection point between the lines $BQ$ and $DP$ lies on the line bisecting $\angle BAD$.

Geometry Mathley 2011-12, 2.4

Let $ABC$ be a triangle inscribed in a circle of radius $O$. The angle bisectors $AD,BE,CF$ are concurrent at $I$. The points $M,N, P$ are respectively on $EF, FD$, and $DE$ such that $IM, IN, IP$ are perpendicular to $BC,CA,AB$ respectively. Prove that the three lines $AM,BN, CP$ are concurrent at a point on $OI$. Nguyễn Minh Hà

1994 ITAMO, 4

Let $ABC$ be a triangle contained in one of the halfplanes determined by a line $r$. Points $A',B',C'$ are the reflections of $A,B,C$ in $r,$ respectively. Consider the line through $A'$ parallel to $BC$, the line through $B'$ parallel to $AC$ and the line through $C'$ parallel to $AB$. Show that these three lines have a common point.

Kyiv City MO Seniors 2003+ geometry, 2015.11.4

In the acute-angled triangle $ ABC $, the sides $ AB $ and $BC$ have different lengths, and the extension of the median $ BM $ intersects the circumscribed circle at the point $ N $. On this circle we note such a point $ D $ that $ \angle BDH = 90 {} ^ \circ $, where $ H $ is the point of intersection of the altitudes of the triangle $ ABC $. The point $K$ is chosen so that $ ANCK $ is a parallelogram. Prove that the lines $ AC $, $ KH $ and $ BD $ intersect at one point. (Igor Nagel)

2009 Tournament Of Towns, 5

Suppose that $X$ is an arbitrary point inside a tetrahedron. Through each vertex of the tetrahedron, draw a straight line that is parallel to the line segment connecting $X$ with the intersection point of the medians of the opposite face. Prove that these four lines meet at the same point.

1988 IMO Longlists, 34

Let $ ABC$ be an acute-angled triangle. The lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are constructed through the vertices $ A$, $ B$ and $ C$ respectively according the following prescription: Let $ H$ be the foot of the altitude drawn from the vertex $ A$ to the side $ BC$; let $ S_{A}$ be the circle with diameter $ AH$; let $ S_{A}$ meet the sides $ AB$ and $ AC$ at $ M$ and $ N$ respectively, where $ M$ and $ N$ are distinct from $ A$; then let $ L_{A}$ be the line through $ A$ perpendicular to $ MN$. The lines $ L_{B}$ and $ L_{C}$ are constructed similarly. Prove that the lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are concurrent.

Estonia Open Senior - geometry, 2020.1.5

A circle $c$ with center $A$ passes through the vertices $B$ and $E$ of a regular pentagon $ABCDE$ . The line $BC$ intersects the circle $c$ for second time at point $F$. The point $G$ on the circle $c$ is chosen such that $| F B | = | FG |$ and $B \ne G$. Prove that the lines $AB, EF$ and $DG$ intersect at one point.

1997 IMO Shortlist, 25

Let $ X,Y,Z$ be the midpoints of the small arcs $ BC,CA,AB$ respectively (arcs of the circumcircle of $ ABC$). $ M$ is an arbitrary point on $ BC$, and the parallels through $ M$ to the internal bisectors of $ \angle B,\angle C$ cut the external bisectors of $ \angle C,\angle B$ in $ N,P$ respectively. Show that $ XM,YN,ZP$ concur.

2011 Abels Math Contest (Norwegian MO), 2b

The diagonals $AD, BE$, and $CF$ of a convex hexagon $ABCDEF$ intersect in a common point. Show that $a(ABE) a(CDA) a(EFC) = a(BCE) a(DEA) a(FAC)$, where $a(KLM)$ is the area of the triangle $KLM$. [img]https://cdn.artofproblemsolving.com/attachments/0/a/bcbbddedde159150fe3c26b1f0a2bfc322aa1a.png[/img]

2021 Sharygin Geometry Olympiad, 10-11.2

Let $ABC$ be a scalene triangle, and $A_o$, $B_o,$ $C_o$ be the midpoints of $BC$, $CA$, $AB$ respectively. The bisector of angle $C$ meets $A_oCo$ and $B_oC_o$ at points $B_1$ and $A_1$ respectively. Prove that the lines $AB_1$, $BA_1$ and $A_oB_o$ concur.

2011 Sharygin Geometry Olympiad, 22

Let $CX, CY$ be the tangents from vertex $C$ of triangle $ABC$ to the circle passing through the midpoints of its sides. Prove that lines $XY , AB$ and the tangent to the circumcircle of $ABC$ at point $C$ concur.

2019 Canadian Mathematical Olympiad Qualification, 6

Pentagon $ABCDE$ is given in the plane. Let the perpendicular from $A$ to line $CD$ be $F$, the perpendicular from $B$ to $DE$ be $G$, from $C$ to $EA$ be $H$, from $D$ to $AB$ be $I$,and from $E$ to $BC$ be $J$. Given that lines $AF,BG,CH$, and $DI$ concur, show that they also concur with line $EJ$.

2014 Oral Moscow Geometry Olympiad, 6

A convex quadrangle $ABCD$ is given. Let $I$ and $J$ be the circles of circles inscribed in the triangles $ABC$ and $ADC$, respectively, and $I_a$ and $J_a$ are the centers of the excircles circles of triangles $ABC$ and $ADC$, respectively (inscribed in the angles $BAC$ and $DAC$, respectively). Prove that the intersection point $K$ of the lines $IJ_a$ and $JI_a$ lies on the bisector of the angle $BCD$.

2014 Czech-Polish-Slovak Match, 4

Let $ABC$ be a triangle, and let $P$ be the midpoint of $AC$. A circle intersects $AP, CP, BC, AB$ sequentially at their inner points $K, L, M, N$. Let $S$ be the midpoint of $KL$. Let also $2 \cdot | AN |\cdot |AB |\cdot |CL | = 2 \cdot | CM | \cdot| BC | \cdot| AK| = | AC | \cdot| AK |\cdot |CL |.$ Prove that if $P\ne S$, then the intersection of $KN$ and $ML$ lies on the perpendicular bisector of the $PS$. (Jan Mazák)

2017 Sharygin Geometry Olympiad, P19

Let cevians $AA', BB'$ and $CC'$ of triangle $ABC$ concur at point $P.$ The circumcircle of triangle $PA'B'$ meets $AC$ and $BC$ at points $M$ and $N$ respectively, and the circumcircles of triangles $PC'B'$ and $PA'C'$ meet $AC$ and $BC$ for the second time respectively at points $K$ and $L$. The line $c$ passes through the midpoints of segments $MN$ and $KL$. The lines $a$ and $b$ are defined similarly. Prove that $a$, $b$ and $c$ concur.

2015 Rioplatense Mathematical Olympiad, Level 3, 6

Let $A B C$ be an acut-angles triangle of incenter $I$, circumcenter $O$ and inradius $r.$ Let $\omega$ be the inscribed circle of the triangle $A B C$. $A_1$ is the point of $\omega$ such that $A IA_1O$ is a convex trapezoid of bases $A O$ and $IA_1$. Let $\omega_1$ be the circle of radius $r$ which goes through $A_1$, tangent to the line $A B$ and is different from $\omega$ . Let $\omega_2$ be the circle of radius $r$ which goes through $A_1$, is tangent to the line $A C$ and is different from $\omega$ . Circumferences $\omega_1$ and $\omega_2$ they are cut at points $A_1$ and $A_2$. Similarly are defined points $B_2$ and $C_2$. Prove that the lines $A A_2, B B_2$ and $CC2$ they are concurrent.

2015 Bulgaria National Olympiad, 5

In a triangle $\triangle ABC$ points $L, P$ and $Q$ lie on the segments $AB, AC$ and $BC$, respectively, and are such that $PCQL$ is a parallelogram. The circle with center the midpoint $M$ of the segment $AB$ and radius $CM$ and the circle of diameter $CL$ intersect for the second time at the point $T$. Prove that the lines $AQ, BP$ and $LT$ intersect in a point.

1968 Spain Mathematical Olympiad, 6

Check and justify , if in every tetrahedron are concurrent: a) The perpendiculars to the faces at their circumcenters. b) The perpendiculars to the faces at their orthocenters. c) The perpendiculars to the faces at their incenters. If so, characterize with some simple geometric property the point in that attend If not, show an example that clearly shows the not concurrency.

2009 Korea Junior Math Olympiad, 2

In an acute triangle $\triangle ABC$, let $A',B',C'$ be the reflection of $A,B,C$ with respect to $BC,CA,AB$. Let $D = B'C \cap BC'$, $E = CA' \cap C'A$, $F = A'B \cap AB'$. Prove that $AD,BE,CF$ are concurrent

2009 QEDMO 6th, 3

Let $A, B, C, A', B', C'$ be six pairs of different points. Prove that the Circles $BCA'$, $CAB'$ and $ABC'$ have a common point, then the Circles $B'C'A, C'A'B$ and $A'B'C$ also share a common point. Note: For three pairs of different points $X, Y$ and $Z$ we define the [i]Circle [/i] $XYZ$ as the circumcircle of the triangle $XYZ$, or - in the case when the points $X, Y$ and $Z$ lie on a straight line - this straight line.

2004 Bosnia and Herzegovina Team Selection Test, 6

It is given triangle $ABC$ and parallelogram $ASCR$ with diagonal $AC$. Let line constructed through point $B$ parallel with $CS$ intersects line $AS$ and $CR$ in $M$ and $P$, respectively. Let line constructed through point $B$ parallel with $AS$ intersects line $AR$ and $CS$ in $N$ and $Q$, respectively. Prove that lines $RS$, $MN$ and $PQ$ are concurrent

Estonia Open Junior - geometry, 2014.1.5

In a triangle $ABC$ the midpoints of $BC, CA$ and $AB$ are $D, E$ and $F$, respectively. Prove that the circumcircles of triangles $AEF, BFD$ and $CDE$ intersect all in one point.

2021 Olimphíada, 4

Let $H$ be the orthocenter of the triangle $ABC$ and let $D$, $E$, $F$ be the feet of heights by $A$, $B$, $C$. Let $\omega_D$, $\omega_E$, $\omega_F$ be the incircles of $FEH$, $DHF$, $HED$ and let $I_D$, $I_E$, $I_F$ be their centers. Show that $I_DD$, $I_EE$ and $I_FF$ compete.

1991 Romania Team Selection Test, 2

Let $A_1A_2A_3A_4$ be a tetrahedron. For any permutation $(i, j,k,h)$ of $1,2,3,4$ denote: - $P_i$ – the orthogonal projection of $A_i$ on $A_jA_kA_h$; - $B_{ij}$ – the midpoint of the edge $A_iAj$, - $C_{ij}$ – the midpoint of segment $P_iP_j$ - $\beta_{ij}$– the plane $B_{ij}P_hP_k$ - $\delta_{ij}$ – the plane $B_{ij}P_iP_j$ - $\alpha_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_kA_h$ - $\gamma_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_iA_j$. Prove that if the points $P_i$ are not in a plane, then the following sets of planes are concurrent: (a) $\alpha_{ij}$, (b) $\beta_{ij}$, (c) $\gamma_{ij}$, (d) $\delta_{ij}$.

2019 Peru MO (ONEM), 3

In the trapezoid $ABCD$ , the base $AB$ is smaller than the $CD$ base. The point $K$ is chosen such that $AK$ is parallel to BC and $BK$ is parallel to $AD$. The points $P$ and $Q$ are chosen on the $AK$ and $BK$ rays respectively, such that $\angle ADP = \angle BCK$ and $\angle BCQ = \angle ADK$. (a) Show that the lines $AD, BC$ and $PQ$ go through the same point. (b) Assuming that the circumscribed circumferences of the $APD$ and $BCQ$ triangles intersect at two points, show that one of those points belongs to the line $PQ$.