This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 297

1982 Brazil National Olympiad, 5

Show how to construct a line segment length $(a^4 + b^4)^{1/4}$ given segments lengths $a$ and $b$.

1979 Vietnam National Olympiad, 6

$ABCD$ is a rectangle with $BC / AB = \sqrt2$. $ABEF$ is a congruent rectangle in a different plane. Find the angle $DAF$ such that the lines $CA$ and $BF$ are perpendicular. In this configuration, find two points on the line $CA$ and two points on the line $BF$ so that the four points form a regular tetrahedron.

1950 Polish MO Finals, 2

We are given two concentric circles, Construct a square whose two vertices lie on one circle and the other two on the other circle.

2021 IMO Shortlist, N4

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

2006 Sharygin Geometry Olympiad, 6

a) Given a segment $AB$ with a point $C$ inside it, which is the chord of a circle of radius $R$. Inscribe in the formed segment a circle tangent to point $C$ and to the circle of radius $R$. b) Given a segment $AB$ with a point $C$ inside it, which is the point of tangency of a circle of radius $r$. Draw through $A$ and $B$ a circle tangent to a circle of radius $r$.

1896 Eotvos Mathematical Competition, 3

Construct a triangle, given the feet of its altitudes. Express the sides of a triangle $Y$ in terms of the sides of the triangle $X$ formed by the feet of the altitudes of $Y$.

1973 IMO, 3

Let $a_1, \ldots, a_n$ be $n$ positive numbers and $0 < q < 1.$ Determine $n$ positive numbers $b_1, \ldots, b_n$ so that: [i]a.)[/i] $ a_{k} < b_{k}$ for all $k = 1, \ldots, n,$ [i]b.)[/i] $q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q}$ for all $k = 1, \ldots, n-1,$ [i]c.)[/i] $\sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.$

KoMaL A Problems 2020/2021, A. 799

For a given quadrilateral $A_1A_2B_1B_2,$ a point $P$ is called [i]phenomenal[/i], if line segments $A_1A_2$ and $B_1B_2$ subtend the same angle at point $P$ (i.e. triangles $PA_1A_2$ and $PB_1B_2$ which can be also also degenerate have equal inner angles at point $P$ disregarding orientation). Three non-collinear points, $A_1,A_2,$ and $B_1$ are given in the plane. Prove that it is possible to find a disc in the plane such that for every point $B_2$ on the disc, the quadrilateral $A_1A_2B_1B_2$ is convex and it is possible to construct seven distinct phenomenal points (with respect to $A_1A_2B_1B_2$) only using a right ruler. With a right ruler the following two operations are allowed: [list=1] [*]Given two points it is possible to draw the straight line connecting them; [*]Given a point and a straight line, it is possible to draw the straight line passing through the given point which is perpendicular to the given line. [/list] [i]Proposed by Á. Bán-Szabó, Budapest[/i]

Kyiv City MO Seniors 2003+ geometry, 2011.10.3

A trapezoid $ABCD$ with bases $BC = a$ and $AD = 2a$ is drawn on the plane. Using only with a ruler, construct a triangle whose area is equal to the area of the trapezoid. With the help of a ruler you can draw straight lines through two known points. (Rozhkova Maria)

2010 Sharygin Geometry Olympiad, 4

In triangle $ABC$, touching points $A', B'$ of the incircle with $BC, AC$ and common point $G$ of segments $AA'$ and $BB'$ were marked. After this the triangle was erased. Restore it by the ruler and the compass.

2023 Yasinsky Geometry Olympiad, 5

Let $ABC$ be a scalene triangle. Given the center $I$ of the inscribe circle and the points $K_1$, $K_2$ and $K_3$ where the inscribed circle is tangent to the sides $BC$, $AC$ and $AB$. Using only a ruler, construct the center of the circumscribed circle of triangle $ABC$. (Hryhorii Filippovskyi)

2022 Yasinsky Geometry Olympiad, 1

An angle whose degree measure is equal to $108^o$ is given . Describe how with help compass and ruler can divide this angle into three equal parts. (Yukhim Rabinovych)

2016 Sharygin Geometry Olympiad, 7

Restore a triangle by one of its vertices, the circumcenter and the Lemoine's point. [i](The Lemoine's point is the intersection point of the reflections of the medians in the correspondent angle bisectors)[/i]

2022 Yasinsky Geometry Olympiad, 3

With an unmarked ruler only, reconstruct the trapezoid $ABCD$ ($AD \parallel BC$) given the vertices $A$ and $B$, the intersection point $O$ of the diagonals of the trapezoid and the midpoint $M$ of the base $AD$. (Yukhim Rabinovych)

2010 IFYM, Sozopol, 3

Two circles are intersecting in points $P$ and $Q$. Construct two points $A$ and $B$ on these circles so that $P\in AB$ and the product $AP.PB$ is maximal.

2007 Sharygin Geometry Olympiad, 5

Reconstruct a triangle, given the incenter, the midpoint of some side and the foot of the altitude drawn on this side.

2003 District Olympiad, 4

Let $ABC$ be a triangle. Let $B'$ be the symmetric of $B$ with respect to $C, C'$ the symmetry of $C$ with respect to $A$ and $A'$ the symmetry of $A$ with respect to $B$. a) Prove that the area of triangle $AC'A'$ is twice the area of triangle $ABC$. b) If we delete points $A, B, C$, how can they be reconstituted? Justify your reasoning.

2012 Oral Moscow Geometry Olympiad, 6

Restore the triangle with a compass and a ruler given the intersection point of altitudes and the feet of the median and angle bisectors drawn to one side. (No research required.)

1969 IMO Longlists, 50

$(NET 5)$ The bisectors of the exterior angles of a pentagon $B_1B_2B_3B_4B_5$ form another pentagon $A_1A_2A_3A_4A_5.$ Construct $B_1B_2B_3B_4B_5$ from the given pentagon $A_1A_2A_3A_4A_5.$

1994 Tournament Of Towns, (399) 1

Construct a convex quadrilateral given the lengths of all its sides and the length of the segment between the midpoints of its diagonals. (Folklore)

2024 Oral Moscow Geometry Olympiad, 1

In a plane: 1. An ellipse with foci $F_1$, $F_2$ lies inside a circle $\omega$. Construct a chord $AB$ of $\omega$. touching the ellipse and such that $A$, $B$, $F_1$, and $F_2$ are concyclic. 2. Let a point $P$ lie inside an acute angled triangle $ABC$, and $A'$, $B'$, $C'$ be the projections of $P$ to $BC$, $CA$, $AB$ respectively. Prove that the diameter of circle $A'B'C'$ equals $CP$ if and only if the circle $ABP$ passes through the circumcenter of $ABC$. [i]Proposed by Alexey Zaslavsky[/i] [img]https://cdn.artofproblemsolving.com/attachments/8/e/ac4a006967fb7013efbabf03e55a194cbaa18b.png[/img]

2009 Oral Moscow Geometry Olympiad, 4

Construct a triangle given a side, the radius of the inscribed circle, and the radius of the exscribed circle tangent to that side. (Research is not required.)

2008 Oral Moscow Geometry Olympiad, 5

Reconstruct an acute-angled triangle given the orthocenter and midpoints of two sides. (A. Zaslavsky)

1971 IMO Longlists, 27

Let $n \geq 2$ be a natural number. Find a way to assign natural numbers to the vertices of a regular $2n$-gon such that the following conditions are satisfied: (1) only digits $1$ and $2$ are used; (2) each number consists of exactly $n$ digits; (3) different numbers are assigned to different vertices; (4) the numbers assigned to two neighboring vertices differ at exactly one digit.

1957 Moscow Mathematical Olympiad, 371

Given quadrilateral $ABCD$ and the directions of its sides. Inscribe a rectangle in $ABCD$.