Found problems: 111
Kyiv City MO Juniors 2003+ geometry, 2020.8.51
Let $ABCDEF$ be a hexagon inscribed in a circle in which $AB = BC, CD = DE$ and $EF = FA$. Prove that the lines $AD, BE$ and $CF$ intersect at one point.
2012 Tournament of Towns, 4
In a triangle $ABC$ two points, $C_1$ and $A_1$ are marked on the sides $AB$ and $BC$ respectively (the points do not coincide with the vertices). Let $K$ be the midpoint of $A_1C_1$ and $I$ be the incentre of the triangle $ABC$. Given that the quadrilateral $A_1BC_1I$ is cyclic, prove that the angle $AKC$ is obtuse.
1999 Ukraine Team Selection Test, 1
A triangle $ABC$ is given. Points $E,F,G$ are arbitrarily selected on the sides $AB,BC,CA$, respectively, such that $AF\perp EG$ and the quadrilateral $AEFG$ is cyclic. Find the locus of the intersection point of $AF$ and $EG$.
2006 Estonia Team Selection Test, 4
The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.
2019 Federal Competition For Advanced Students, P2, 2
A (convex) trapezoid $ABCD$ is good, if it is inscribed in a circle, sides $AB$ and $CD$ are the bases and $CD$ is shorter than $AB$. For a good trapezoid $ABCD$ the following terms are defined:
$\bullet$ The parallel to $AD$ passing through $B$ intersects the extension of side $CD$ at point $S$.
$\bullet$ The two tangents passing through $S$ on the circumircle of the trapezoid touch the circle at $E$ and $F$, where $E$ lies on the same side of the straight line $CD$ as $A$.
Give the simplest possible equivalent condition (expressed in side lengths and / or angles of the trapezoid) so that with a good trapezoid $ABCD$ the two angles $\angle BSE$ and $\angle FSC$ have the same measure.
(Walther Janous)
2006 Estonia Team Selection Test, 2
The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.
Mathley 2014-15, 5
A quadrilateral $ABCD$ is inscribed in a circle $(O)$. Another circle $(I)$ is tangent to the diagonals $AC, BD$ at $M, N$ respectively. Suppose that $MN$ meets $AB,CD$ at $P, Q$ respectively. The circumcircle of triangle $IMN$ meets the circumcircles of $IAB, ICD$ at $K, L$ respectively, which are distinct from $I$. Prove that the lines $PK, QL$, and $OI$ are concurrent.
Tran Minh Ngoc, a student of Ho Chi Minh City College, Ho Chi Minh
1989 Bundeswettbewerb Mathematik, 3
Over each side of a cyclic quadrilateral erect a rectangle whose height is equal to the length of the opposite side. Prove that the centers of these rectangles form another rectangle.
2008 Switzerland - Final Round, 8
Let $ABCDEF$ be a convex hexagon inscribed in a circle . Prove that the diagonals $AD, BE$ and $CF$ intersect at one point if and only if $$\frac{AB}{BC} \cdot \frac{CD}{DE}\cdot \frac{EF}{FA}=1$$
1978 All Soviet Union Mathematical Olympiad, 261
Given a circle with radius $R$ and inscribed $n$-gon with area $S$. We mark one point on every side of the given polygon. Prove that the perimeter of the polygon with the vertices in the marked points is not less than $2S/R$.
2013 NZMOC Camp Selection Problems, 6
$ABCD$ is a quadrilateral having both an inscribed circle (one tangent to all four sides) with center $I,$ and a circumscribed circle with center $O$. Let $S$ be the point of intersection of the diagonals of $ABCD$. Show that if any two of $S, I$ and $O$ coincide, then $ABCD$ is a square (and hence all three coincide).
1960 Polish MO Finals, 3
On the circle 6 distinct points $ A $, $ B $, $ C $, $ D $, $ E $, $ F $ are chosen in such a way that $ AB $ is parallel to $ DE $, and $ DC $ is parallel to $ AF $. Prove that $ BC $ is parallel to $ EF $
1999 German National Olympiad, 3
A mathematician investigates methods of finding area of a convex quadrilateral obtains the following formula for the area $A$ of a quadrilateral with consecutive sides $a,b,c,d$:
$A =\frac{a+c}{2}\frac{b+d}{2}$ (1) and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$ (2) where $p = (a+b+c+d)/2$.
However, these formulas are not valid for all convex quadrilaterals. Prove that (1) holds if and only if the quadrilateral is a rectangle, while (2) holds if and only if the quadrilateral is cyclic.
2021 Saudi Arabia JBMO TST, 2
In a circle $O$, there are six points, $ A$, $ B$, $C$, $D$, $E$, $F$ in a counterclockwise order such that $BD \perp CF$ , and $CF$, $BE$, $AD$ are concurrent. Let the perpendicular from $B$ to $AC$ be $M$, and the perpendicular from $D$ to $CE$ be $N$. Prove that $AE \parallel MN$.
1975 Chisinau City MO, 89
A closed line on a plane is such that any quadrangle inscribed in it has the sum of opposite angles equal to $180^o$. Prove that this line is a circle.
2010 Dutch BxMO TST, 4
The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.
2009 Postal Coaching, 3
Let $\Omega$ be an $n$-gon inscribed in the unit circle, with vertices $P_1, P_2, ..., P_n$.
(a) Show that there exists a point $P$ on the unit circle such that $PP_1 \cdot PP_2\cdot ... \cdot PP_n \ge 2$.
(b) Suppose for each $P$ on the unit circle, the inequality $PP_1 \cdot PP_2\cdot ... \cdot PP_n \le 2$ holds. Prove that $\Omega$ is regular.
2002 Estonia Team Selection Test, 4
Let $ABCD$ be a cyclic quadrilateral such that $\angle ACB = 2\angle CAD$ and $\angle ACD = 2\angle BAC$. Prove that $|CA| = |CB| + |CD|$.
2010 Contests, 4
The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.
1982 Polish MO Finals, 2
In a cyclic quadrilateral $ABCD$ the line passing through the midpoint of $AB$ and the intersection point of the diagonals is perpendicular to $CD$. Prove that either the sides $AB$ and $CD$ are parallel or the diagonals are perpendicular.
2010 Oral Moscow Geometry Olympiad, 1
Convex $n$-gon $P$, where $n> 3$, is cut into equal triangles by diagonals that do not intersect inside it. What are the possible values of $n$ if the $n$-gon is cyclic?
2016 Bosnia and Herzegovina Team Selection Test, 5
Let $k$ be a circumcircle of triangle $ABC$ $(AC<BC)$. Also, let $CL$ be an angle bisector of angle $ACB$ $(L \in AB)$, $M$ be a midpoint of arc $AB$ of circle $k$ containing the point $C$, and let $I$ be an incenter of a triangle $ABC$. Circle $k$ cuts line $MI$ at point $K$ and circle with diameter $CI$ at $H$. If the circumcircle of triangle $CLK$ intersects $AB$ again at $T$, prove that $T$, $H$ and $C$ are collinear.
.
2013 Saudi Arabia BMO TST, 1
$ABCD$ is a cyclic quadrilateral such that $AB = BC = CA$. Diagonals $AC$ and $BD$ intersect at $E$. Given that $BE = 19$ and $ED = 6$, find the possible values of $AD$.
Kvant 2019, M2588
The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is
a) tangential (circumscribed),
b) cyclic (inscribed).
(Nairi Sedrakyan)
2003 Estonia National Olympiad, 3
Let $ABC$ be a triangle and $A_1, B_1, C_1$ points on $BC, CA, AB$, respectively, such that the lines $AA_1, BB_1, CC_1$ meet at a single point. It is known that $A, B_1, A_1, B$ are concyclic and $B, C_1, B_1, C$ are concyclic. Prove that
a) $C, A_1, C_1, A$ are concyclic,
b) $AA_1,, BB_1, CC_1$ are the heights of $ABC$.