This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 180

2000 Austrian-Polish Competition, 2

In a unit cube, $CG$ is the edge perpendicular to the face $ABCD$. Let $O_1$ be the incircle of square $ABCD$ and $O_2$ be the circumcircle of triangle $BDG$. Determine min$\{XY|X\in O_1,Y\in O_2\}$.

2011 Tournament of Towns, 1

Pete has marked several (three or more) points in the plane such that all distances between them are different. A pair of marked points $A,B$ will be called unusual if $A$ is the furthest marked point from $B$, and $B$ is the nearest marked point to $A$ (apart from $A$ itself). What is the largest possible number of unusual pairs that Pete can obtain?

2018 India PRMO, 7

A point $P$ in the interior of a regular hexagon is at distances $8,8,16$ units from three consecutive vertices of the hexagon, respectively. If $r$ is radius of the circumscribed circle of the hexagon, what is the integer closest to $r$?

2018 India IMO Training Camp, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Thailand TST, 1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2018 Peru IMO TST, 6

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1999 Rioplatense Mathematical Olympiad, Level 3, 5

The quadrilateral $ABCD$ is inscribed in a circle of radius $1$, so that $AB$ is a diameter of the circumference and $CD = 1$. A variable point $X$ moves along the semicircle determined by $AB$ that does not contain $C$ or $D$. Determine the position of $X$ for which the sum of the distances from $X$ to lines $BC, CD$ and $DA$ is maximum.

1988 ITAMO, 3

A regular pentagon of side length $1$ is given. Determine the smallest $r$ for which the pentagon can be covered by five discs of radius $r$ and justify your answer.

2007 Portugal MO, 6

Tags: geometry , min , max , distance
In a village, the maximum distance between two houses is $M$ and the minimum distance is $m$. Prove that if the village has $6$ houses, then $\frac{M}{m} \ge \sqrt3$.

Durer Math Competition CD Finals - geometry, 2008.D1

Given a square grid where the distance between two adjacent grid points is $1$. Can the distance between two grid points be $\sqrt5, \sqrt6, \sqrt7$ or $\sqrt{2007}$ ?

1950 Moscow Mathematical Olympiad, 177

In a country, one can get from some point $A$ to any other point either by walking, or by calling a cab, waiting for it, and then being driven. Every citizen always chooses the method of transportation that requires the least time. It turns out that the distances and the traveling times are as follows: $1$ km takes $10$ min, $2$ km takes $15$ min, $3$ km takes $17.5 $ min. We assume that the speeds of the pedestrian and the cab, and the time spent waiting for cabs, are all constants. How long does it take to reach a point which is $6$ km from $A$?

May Olympiad L2 - geometry, 1995.4

Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?

1980 Bundeswettbewerb Mathematik, 2

In a triangle $ABC$, the bisectors of angles $A$ and $B$ meet the opposite sides of the triangle at points $D$ and $E$, respectively. A point $P$ is arbitrarily chosen on the line $DE$. Prove that the distance of $P$ from line $AB$ equals the sum or the difference of the distances of $P$ from lines $AC$ and $BC$.

2021 Sharygin Geometry Olympiad, 9.4

Define the distance between two triangles to be the closest distance between two vertices, one from each triangle. Is it possible to draw five triangles in the plane such that for any two of them, their distance equals the sum of their circumradii?

2010 Chile National Olympiad, 5

Consider a line $ \ell $ in the plane and let $ B_1, B_2, B_3 $ be different points in $ \ell$. Let $ A $ be a point that is not in $ \ell$. Show that there is $ P, Q $ in $ {B_1, B_2, B_3} $ with $ P \ne Q $ so that the distance from $ A $ to $ \ell$ is greater than the distance from $ P $ to the line that passes through $ A $ and $ Q $.

2009 Kyiv Mathematical Festival, 5

Assume that a triangle $ABC$ satisfies the following property: For any point from the triangle, the sum of distances from $D$ to the lines $AB,BC$ and $CA$ is less than $1$. Prove that the area of the triangle is less than or equal to $\frac{1}{\sqrt3}$

1986 All Soviet Union Mathematical Olympiad, 421

Certain king of a certain state wants to build $n$ cities and $n-1$ roads, connecting them to provide a possibility to move from every city to every city. (Each road connects two cities, the roads do not intersect, and don't come through another city.) He wants also, to make the shortests distances between the cities, along the roads, to be $1,2,3,...,n(n-1)/2$ kilometres. Is it possible for a) $n=6$ b) $n=1986$ ?

2000 Kazakhstan National Olympiad, 8

Given a triangle $ ABC $ and a point $ M $ inside it. Prove that $$ \min \{MA, MB, MC\} + MA + MB + MC <AB + BC + AC. $$

1974 IMO Shortlist, 4

The sum of the squares of five real numbers $a_1, a_2, a_3, a_4, a_5$ equals $1$. Prove that the least of the numbers $(a_i - a_j)^2$, where $i, j = 1, 2, 3, 4,5$ and $i \neq j$, does not exceed $\frac{1}{10}.$

2021 Israel TST, 2

Let $n>1$ be an integer. Hippo chooses a list of $n$ points in the plane $P_1, \dots, P_n$; some of these points may coincide, but not all of them can be identical. After this, Wombat picks a point from the list $X$ and measures the distances from it to the other $n-1$ points in the list. The average of the resulting $n-1$ numbers will be denoted $m(X)$. Find all values of $n$ for which Hippo can prepare the list in such a way, that for any point $X$ Wombat may pick, he can point to a point $Y$ from the list such that $XY=m(X)$.

1971 All Soviet Union Mathematical Olympiad, 147

Given an unit square and some circles inside. Radius of each circle is less than $0.001$, and there is no couple of points belonging to the different circles with the distance between them $0.001$ exactly. Prove that the area, covered by the circles is not greater than $0.34$.

1987 Tournament Of Towns, (143) 4

On a chessboard a square is chosen . The sum of the squares of distances from its centre to the centre of all black squares is designated by $a$ and to the centre of all white squares by $b$. Prove that $a = b$. (A. Andj ans, Riga)

2019 Oral Moscow Geometry Olympiad, 1

In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$

2017 Hanoi Open Mathematics Competitions, 13

Let $ABC$ be a triangle. For some $d>0$ let $P$ stand for a point inside the triangle such that $|AB| - |P B| \ge d$, and $|AC | - |P C | \ge d$. Is the following inequality true $|AM | - |P M | \ge d$, for any position of $M \in BC $?

Estonia Open Junior - geometry, 2009.2.1

A Christmas tree must be erected inside a convex rectangular garden and attached to the posts at the corners of the garden with four ropes running at the same height from the ground. At what point should the Christmas tree be placed, so that the sum of the lengths of these four cords is as small as possible?