Found problems: 180
2018 May Olympiad, 4
In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.
1993 Chile National Olympiad, 6
Let $ ABCD $ be a rectangle of area $ S $, and $ P $ be a point inside it. We denote by $ a, b, c, d $ the distances from $ P $ to the vertices $ A, B, C, D $ respectively. Prove that $ a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2\ge 2S $. When there is equality?
2011 Bundeswettbewerb Mathematik, 4
Let $ABCD$ be a tetrahedron that is not degenerate and not necessarily regular, where sides $AD$ and $BC$ have the same length $a$, sides $BD$ and $AC$ have the same length $b$, side $AB$ has length $c_1$ and the side $CD$ has length $c_2$. There is a point $P$ for which the sum of the distances to the vertices of the tetrahedron is minimal. Determine this sum depending on the quantities $a, b, c_1$ and $c_2$.
1969 IMO Longlists, 11
$(BUL 5)$ Let $Z$ be a set of points in the plane. Suppose that there exists a pair of points that cannot be joined by a polygonal line not passing through any point of $Z.$ Let us call such a pair of points unjoinable. Prove that for each real $r > 0$ there exists an unjoinable pair of points separated by distance $r.$
2021 Auckland Mathematical Olympiad, 2
Given five points inside an equilateral triangle of side length $2$, show that there are two points whose distance from each other is at most $ 1$.
2019 Tournament Of Towns, 1
The distances from a certain point inside a regular hexagon to three of its consecutive vertices are equal to $1, 1$ and $2$, respectively. Determine the length of this hexagon's side.
(Mikhail Evdokimov)
2019 Hanoi Open Mathematics Competitions, 13
Find all points inside a given equilateral triangle such that the distances from it to three sides of the given triangle are the side lengths of a triangle.
2015 Abels Math Contest (Norwegian MO) Final, 3
The five sides of a regular pentagon are extended to lines $\ell_1, \ell_2, \ell_3, \ell_4$, and $\ell_5$.
Denote by $d_i$ the distance from a point $P$ to $\ell_i$.
For which point(s) in the interior of the pentagon is the product $d_1d_2d_3d_4d_5$ maximal?
2010 District Olympiad, 3
Consider the cube $ABCDA'B'C'D'$. The bisectors of the angles $\angle A' C'A$ and $\angle A' AC'$ intersect $AA'$ and $A'C$ in the points $P$, respectively $S$. The point $M$ is the foot of the perpendicular from $A'$ on $CP$ , and $N$ is the foot of the perpendicular from $A'$ to $AS$. Point $O$ is the center of the face $ABB'A'$
a) Prove that the planes $(MNO)$ and $(AC'B)$ are parallel.
b) Calculate the distance between these planes, knowing that $AB = 1$.
1971 IMO Longlists, 28
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
Durer Math Competition CD Finals - geometry, 2019.C5
$A, B, C, D$ are four distinct points such that triangles $ABC$ and $CBD$ are both equilateral. Find as many circles as you can, which are equidistant from the four points. How can these circles be constructed?
[i]Remark: The distance between a point $P$ and a circle c is measured as follows: we join $P$ and the centre of the circle with a straight line, and measure how much we need to travel along thisline (starting from $P$) to hit the perimeter of the circle. If $P$ is an internal point of the circle, the distance is the length of the shorter such segment. The distance between a circle and itscentre is the radius of the circle.[/i]
2003 Junior Balkan Team Selection Tests - Romania, 4
Two unit squares with parallel sides overlap by a rectangle of area $1/8$. Find the extreme values of the distance between the centers of the squares.
2021 Israel TST, 2
Let $n>1$ be an integer. Hippo chooses a list of $n$ points in the plane $P_1, \dots, P_n$; some of these points may coincide, but not all of them can be identical. After this, Wombat picks a point from the list $X$ and measures the distances from it to the other $n-1$ points in the list. The average of the resulting $n-1$ numbers will be denoted $m(X)$.
Find all values of $n$ for which Hippo can prepare the list in such a way, that for any point $X$ Wombat may pick, he can point to a point $Y$ from the list such that $XY=m(X)$.
1997 Romania National Olympiad, 4
Let $S$ be a point outside of the plane of the parallelogram $ABCD$, such that the triangles $SAB$, $SBC$, $SCD$ and $SAD$ are equivalent.
a) Prove that $ABCD$ is a rhombus.
b) If the distance from $S$ to the plane $(A, B, C, D)$ is $12$, $BD = 30$ and $AC = 40$, compute the distance from the projection of the point $S$ on the plane $(A, B, C, D)$ to the plane $(S,B,C)$ .
2018 India IMO Training Camp, 1
Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.
2020 Baltic Way, 15
On a plane, Bob chooses 3 points $A_0$, $B_0$, $C_0$ (not necessarily distinct) such that $A_0B_0+B_0C_0+C_0A_0=1$. Then he chooses points $A_1$, $B_1$, $C_1$ (not necessarily distinct) in such a way that $A_1B_1=A_0B_0$ and $B_1C_1=B_0C_0$.
Next he chooses points $A_2$, $B_2$, $C_2$ as a permutation of points $A_1$, $B_1$, $C_1$. Finally, Bob chooses points $A_3$, $B_3$, $C_3$ (not necessarily distinct) in such a way that $A_3B_3=A_2B_2$ and $B_3C_3=B_2C_2$. What are the smallest and the greatest possible values of $A_3B_3+B_3C_3+C_3A_3$ Bob can obtain?
2005 Abels Math Contest (Norwegian MO), 2a
In an aquarium there are nine small fish. The aquarium is cube shaped with a side length of two meters and is completely filled with water. Show that it is always possible to find two small fish with a distance of less than $\sqrt3$ meters.
1969 IMO Shortlist, 11
$(BUL 5)$ Let $Z$ be a set of points in the plane. Suppose that there exists a pair of points that cannot be joined by a polygonal line not passing through any point of $Z.$ Let us call such a pair of points unjoinable. Prove that for each real $r > 0$ there exists an unjoinable pair of points separated by distance $r.$
2009 Postal Coaching, 5
Let $ABCD$ be a quadrilateral that has an incircle with centre $O$ and radius $r$. Let $P = AB \cap CD$, $Q = AD \cap BC$, $E = AC \cap BD$. Show that $OE \cdot d = r^2$, where $d$ is the distance of $O$ from $PQ$.
1947 Moscow Mathematical Olympiad, 132
Given line $AB$ and point $M$. Find all lines in space passing through $M$ at distance $d$.
2002 Estonia National Olympiad, 2
Inside an equilateral triangle there is a point whose distances from the sides of the triangle are $3, 4$ and $5$. Find the area of the triangle.
1978 Vietnam National Olympiad, 6
Given a rectangular parallelepiped $ABCDA'B'C'D'$ with the bases $ABCD, A'B'C'D'$, the edges $AA',BB', CC',DD'$ and $AB = a,AD = b,AA' = c$. Show that there exists a triangle with the sides equal to the distances from $A,A',D$ to the diagonal $BD'$ of the parallelepiped. Denote those distances by $m_1,m_2,m_3$. Find the relationship between $a, b, c,m_1,m_2,m_3$.
1971 IMO, 1
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
1987 All Soviet Union Mathematical Olympiad, 454
Vertex $B$ of the $\angle ABC$ lies out the circle, and the $[BA)$ and $[BC)$ beams intersect it. Point $K$ belongs to the intersection of the $[BA)$ beam and the circumference. Chord $KP$ is orthogonal to the angle bisector of $\angle ABC$ . Line $(KP)$ intersects the beam $BC$ in the point $M$. Prove that the segment $[PM]$ is twice as long as the distance from the circle centre to the angle bisector of $\angle ABC$ .
2008 Postal Coaching, 2
Let $ABC$ be a triangle, $AD$ be the altitude from $A$ on to $BC$. Draw perpendiculars $DD_1$ and $DD_2$ from $D$ on to $AB$ and $AC$ respectively and let $p(A)$ be the length of the segment $D_1D_2$. Similarly define $p(B)$ and $p(C)$. Prove that $\frac{p(A)p(B)p(C)}{s^3}\le \frac18$ , where s is the semi-perimeter of the triangle $ABC$.