This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 361

2021 Bosnia and Herzegovina Junior BMO TST, 3

In the convex quadrilateral $ABCD$, $AD = BD$ and $\angle ACD = 3 \angle BAC$. Let $M$ be the midpoint of side $AD$. If the lines $CM$ and $AB$ are parallel, prove that the angle $\angle ACB$ is right.

2019 Singapore MO Open, 1

In the acute-angled triangle $ABC$ with circumcircle $\omega$ and orthocenter $H$, points $D$ and $E$ are the feet of the perpendiculars from $A$ onto $BC$ and from $B$ onto $AC$ respecively. Let $P$ be a point on the minor arc $BC$ of $\omega$ . Points $M$ and $N$ are the feet of the perpendiculars from $P$ onto lines $BC$ and $AC$ respectively. Let $PH$ and $MN$ intersect at $R$. Prove that $\angle DMR=\angle MDR$.

Kyiv City MO Seniors 2003+ geometry, 2005.10.4

In a right triangle $ABC $ with a right angle $\angle C $, n the sides $AC$ and $AB$, the points $M$ and $N$ are selected, respectively, that $CM = MN$ and $\angle MNB = \angle CBM$. Let the point $K$ be the projection of the point $C $ on the segment $MB $. Prove that the line $NK$ passes through the midpoint of the segment $BC$. (Alex Klurman)

2015 Sharygin Geometry Olympiad, P8

Diagonals of an isosceles trapezoid $ABCD$ with bases $BC$ and $AD$ are perpendicular. Let $DE$ be the perpendicular from $D$ to $AB$, and let $CF$ be the perpendicular from $C$ to $DE$. Prove that angle $DBF$ is equal to half of angle $FCD$.

2005 Sharygin Geometry Olympiad, 9.1

The quadrangle $ABCD$ is inscribed in a circle whose center $O$ lies inside it. Prove that if $\angle BAO = \angle DAC$, then the diagonals of the quadrilateral are perpendicular.

Estonia Open Senior - geometry, 2019.1.5

Polygon $A_0A_1...A_{n-1}$ satisfies the following: $\bullet$ $A_0A_1 \le A_1A_2 \le ...\le A_{n-1}A_0$ and $\bullet$ $\angle A_0A_1A_2 = \angle A_1A_2A_3 = ... = \angle A_{n-2}A_{n-1}A_0$ (all angles are internal angles). Prove that this polygon is regular.

2011 Dutch IMO TST, 3

The circles $\Gamma_1$ and $\Gamma_2$ intersect at $D$ and $P$. The common tangent line of the two circles closest to point $D$ touches $\Gamma_1$ in A and $\Gamma_2$ in $B$. The line $AD$ intersects $\Gamma_2$ for the second time in $C$. Let $M$ be the midpoint of line segment $BC$. Prove that $\angle DPM = \angle BDC$.

Novosibirsk Oral Geo Oly IX, 2020.4

Points $E$ and $F$ are the midpoints of sides $BC$ and $CD$ of square $ABCD$, respectively. Lines $AE$ and $BF$ meet at point $P$. Prove that $\angle PDA = \angle AED$.

2010 Dutch IMO TST, 4

Let $ABCD$ be a cyclic quadrilateral satisfying $\angle ABD = \angle DBC$. Let $E$ be the intersection of the diagonals $AC$ and $BD$. Let $M$ be the midpoint of $AE$, and $N$ be the midpoint of $DC$. Show that $MBCN$ is a cyclic quadrilateral.

2021 Sharygin Geometry Olympiad, 9.6

The diagonals of trapezoid $ABCD$ ($BC\parallel AD$) meet at point $O$. Points $M$ and $N$ lie on the segments $BC$ and $AD$ respectively. The tangent to the circle $AMC$ at $C$ meets the ray $NB$ at point $P$; the tangent to the circle $BND$ at $D$ meets the ray $MA$ at point $R$. Prove that $\angle BOP =\angle AOR$.

2017 JBMO Shortlist, G2

Let $ABC$ be an acute triangle such that $AB$ is the shortest side of the triangle. Let $D$ be the midpoint of the side $AB$ and $P$ be an interior point of the triangle such that $\angle CAP = \angle CBP = \angle ACB$. Denote by M and $N$ the feet of the perpendiculars from $P$ to $BC$ and $AC$, respectively. Let $p$ be the line through $ M$ parallel to $AC$ and $q$ be the line through $N$ parallel to $BC$. If $p$ and $q$ intersect at $K$ prove that $D$ is the circumcenter of triangle $MNK$.

Ukraine Correspondence MO - geometry, 2009.7

Let $ABCDE$ be a convex pentagon such that $AE\parallel BC$ and $\angle ADE = \angle BDC$. The diagonals $AC$ and $BE$ intersect at point $F$. Prove that $\angle CBD= \angle ADF$.

Ukraine Correspondence MO - geometry, 2018.6

Let $AD$ and $AE$ be the altitude and median of triangle $ABC$, in with $\angle B = 2\angle C$. Prove that $AB = 2DE$.

2021 Sharygin Geometry Olympiad, 9.3

Let $ABC$ be an acute-angled scalene triangle and $T$ be a point inside it such that $\angle ATB = \angle BTC = 120^o$. A circle centered at point $E$ passes through the midpoints of the sides of $ABC$. For $B, T, E$ collinear, find angle $ABC$.

2017-IMOC, G7

Given $\vartriangle ABC$ with circumcenter $O$. Let $D$ be a point satisfying $\angle ABD = \angle DCA$ and $M$ be the midpoint of $AD$. Suppose that $BM,CM$ intersect circle $(O)$ at another points $E, F$, respectively. Let $P$ be a point on $EF$ so that $AP$ is tangent to circle $(O)$. Prove that $A, P,M,O$ are concyclic. [img]https://2.bp.blogspot.com/-gSgUG6oywAU/XnSKTnH1yqI/AAAAAAAALdw/3NuPFuouCUMO_6KbydE-KIt6gCJ4OgWdACK4BGAYYCw/s320/imoc2017%2Bg7.png[/img]

Swiss NMO - geometry, 2012.3

The circles $k_1$ and $k_2$ intersect at points $D$ and $P$. The common tangent of the two circles on the side of $D$ touches $k_1$ at $A$ and $k_2$ at $B$. The straight line $AD$ intersects $k_2$ for a second time at $C$. Let $M$ be the center of the segment $BC$. Show that $ \angle DPM = \angle BDC$ .

Champions Tournament Seniors - geometry, 2012.2

About the triangle $ABC$ it is known that $AM$ is its median, and $\angle AMC = \angle BAC$. On the ray $AM$ lies the point $K$ such that $\angle ACK = \angle BAC$. Prove that the centers of the circumcircles of the triangles $ABC, ABM$ and $KCM$ lie on the same line.

2018 Iranian Geometry Olympiad, 5

Suppose that $ABCD$ is a parallelogram such that $\angle DAC = 90^o$. Let $H$ be the foot of perpendicular from $A$ to $DC$, also let $P$ be a point along the line $AC$ such that the line $PD$ is tangent to the circumcircle of the triangle $ABD$. Prove that $\angle PBA = \angle DBH$. Proposed by Iman Maghsoudi

2014 Denmark MO - Mohr Contest, 3

The points $C$ and $D$ lie on a halfline from the midpoint $M$ of a segment $AB$, so that $|AC| = |BD|$. Prove that the angles $u = \angle ACM$ and $v = \angle BDM$ are equal. [img]https://1.bp.blogspot.com/-tQEJ1VBCa8U/XzT7IhwlZHI/AAAAAAAAMVI/xpRdlj5Rl64VUt_tCRsQ1UxIsv_SGrMlACLcBGAsYHQ/s0/2014%2BMohr%2Bp3.png[/img]

2019 Philippine MO, 4

In acute triangle $ABC $with $\angle BAC > \angle BCA$, let $P$ be the point on side $BC$ such that $\angle PAB = \angle BCA$. The circumcircle of triangle $AP B$ meets side $AC$ again at $Q$. Point $D$ lies on segment $AP$ such that $\angle QDC = \angle CAP$. Point $E$ lies on line $BD$ such that $CE = CD$. The circumcircle of triangle $CQE$ meets segment $CD$ again at $F$, and line $QF$ meets side $BC$ at $G$. Show that $B, D, F$, and $G$ are concyclic

2011 Cuba MO, 6

Let $ABC$ be a triangle with circumcenter $O$. Let $\omega (O_1)$ be the circumference which passes through $A$ and $B$ and is tangent to $BC$ at $B$. $\omega (O_2)$ the circle that passes through $A$ and $C$ and is tangent to $BC$ at $C$. Let $M$ the midpoint of $O_1O_2$ and $D$ the symmetric point of $O$ with respect to $A$. Prove that $\angle O_1DM = \angle ODO_2$.

2021 Portugal MO, 2

Let $ABC$ be a triangle such that $AB = AC$. Let $D$ be a point in $[BC]$ and $E$ a point in $[AD]$ such that $\angle BE D = \angle BAC = 2 \angle DEC$. Shows that $DB = 2CD$. [img]https://cdn.artofproblemsolving.com/attachments/d/5/677e19d8e68a89134e17a4ab6051e41f283486.png[/img]

2019 Romania National Olympiad, 3

In the regular hexagonal prism $ABCDEFA_1B_1C_1D_1E_1F_1$, We construct $, Q$, the projections of point $A$ on the lines $A_1B$ and $A_1C$ repsectilvely. We construct $R,S$, the projections of point $D_1$ on the lines $A_1D$ and $C_1D$ respectively. a) Determine the measure of the angle between the planes $(AQP)$ and $(D_1RS)$. b) Show that $\angle AQP = \angle D_1RS$.

2019 Regional Olympiad of Mexico Center Zone, 3

Let $ABC$ be an acute triangle and $D$ a point on the side $BC$ such that $\angle BAD = \angle DAC$. The circumcircles of the triangles $ABD$ and $ACD$ intersect the segments $AC$ and $AB$ at $E$ and $F$, respectively. The internal bisectors of $\angle BDF$ and $\angle CDE$ intersect the sides $AB$ and $AC$ at $P$ and $Q$, respectively. Points $X$ and $Y$ are chosen on the side $BC$ such that $PX$ is parallel to $AC$ and $QY$ is parallel to $AB$. Finally, let $Z$ be the point of intersection of $BE$ and $CF$. Prove that $ZX = ZY$.

Swiss NMO - geometry, 2018.4

Let $D$ be a point inside an acute triangle $ABC$, such that $\angle BAD = \angle DBC$ and $\angle DAC = \angle BCD$. Let $P$ be a point on the circumcircle of the triangle $ADB$. Suppose $P$ are itself outside the triangle $ABC$. A line through $P$ intersects the ray $BA$ in $X$ and ray $CA$ in $Y$, so that $\angle XPB = \angle PDB$. Show that $BY$ and $CX$ intersect on $AD$.