This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2012 Dutch BxMO/EGMO TST, 4

Let $ABCD$ a convex quadrilateral (this means that all interior angles are smaller than $180^o$), such that there exist a point $M$ on line segment $AB$ and a point $N$ on line segment $BC$ having the property that $AN$ cuts the quadrilateral in two parts of equal area, and such that the same property holds for $CM$. Prove that $MN$ cuts the diagonal $BD$ in two segments of equal length.

Novosibirsk Oral Geo Oly VIII, 2020.4

Point $P$ is chosen inside triangle $ABC$ so that $\angle APC+\angle ABC=180^o$ and $BC=AP.$ On the side $AB$, a point $K$ is chosen such that $AK = KB + PC$. Prove that $CK \perp AB$.

Mathley 2014-15, 4

Points $E, F$ are in the plane of triangle $ABC$ so that triangles $ABE$ and $ACF$ are the opposite directed, and the two triangles are isosceles in that $BE = AE, AF = CF$. Let $H, K$ be the orthocenter of triangle $ABE, ACF$ respectively. Points $M, N$ are the intersections of $BE$ and $CF, CK$ and $CH$. Prove that $MN$ passes through the center of the circumcircle of triangle $ABC$. Nguyen Minh Ha, High School for Education, Hanoi Pedagogical University

2023 Novosibirsk Oral Olympiad in Geometry, 6

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

2005 Singapore Senior Math Olympiad, 2

Consider the nonconvex quadrilateral $ABCD$ with $\angle C>180$ degrees. Let the side $DC$ extended to meet $AB$ at $F$ and the side $BC$ extended to meet $AD$ at $E$. A line intersects the interiors of the sides $AB,AD,BC,CD$ at points $K,L,J,I$ respectively. Prove that if $DI=CF$ and $BJ=CE$, then $KJ=IL$

2023 Iranian Geometry Olympiad, 2

In an isosceles triangle $ABC$ with $AB = AC$ and $\angle A = 30^o$, points $L$ and $M$ lie on the sides $AB$ and $AC$, respectively such that $AL = CM$. Point $K$ lies on $AB$ such that $\angle AMK = 45^o$. If $\angle LMC = 75^o$, prove that $KM +ML = BC$. [i]Proposed by Mahdi Etesamifard - Iran[/i]

2015 Junior Balkan Team Selection Tests - Moldova, 7

In a right triangle $ABC$ with $\angle BAC =90^o $and $\angle ABC= 54^o$, point $M$ is the midpoint of the hypotenuse $[BC]$ , point $D$ is the foot of the angle bisector drawn from the vertex $C$ and $AM \cap CD = \{E\}$. Prove that $AB= CE$.

2021 Yasinsky Geometry Olympiad, 5

In triangle $ABC$, point $I$ is the center of the inscribed circle. $AT$ is a segment tangent to the circle circumscribed around the triangle $BIC$ . On the ray $AB$ beyond the point$ B$ and on the ray $AC$ beyond the point $C$, we draw the segments $BD$ and $CE$, respectively, such that $BD = CE = AT$. Let the point $F$ be such that $ABFC$ is a parallelogram. Prove that points $D, E$ and $F$ lie on the same line. (Dmitry Prokopenko)

2020 Yasinsky Geometry Olympiad, 5

It is known that a circle can be inscribed in the quadrilateral $ABCD$, in addition $\angle A = \angle C$. Prove that $AB = BC$, $CD = DA$. (Olena Artemchuk)

Ukraine Correspondence MO - geometry, 2021.7

Let $I$ be the center of a circle inscribed in triangle $ABC$, in which $\angle BAC = 60 ^o$ and $AB \ne AC$. The points $D$ and $E$ were marked on the rays $BA$ and $CA$ so that $BD = CE = BC$. Prove that the line $DE$ passes through the point $I$.

2017 Dutch Mathematical Olympiad, 2

A parallelogram $ABCD$ with $|AD| =|BD|$ has been given. A point $E$ lies on line segment $|BD|$ in such a way that $|AE| = |DE|$. The (extended) line $AE$ intersects line segment $BC$ in $F$. Line $DF$ is the angle bisector of angle $CDE$. Determine the size of angle $ABD$. [asy] unitsize (3 cm); pair A, B, C, D, E, F; D = (0,0); A = dir(250); B = dir(290); C = B + D - A; E = extension((A + D)/2, (A + D)/2 + rotate(90)*(A - D), B, D); F = extension(A, E, B, C); draw(A--B--C--D--cycle); draw(A--F--D--B); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, NE); dot("$D$", D, NW); dot("$E$", E, S); dot("$F$", F, SE); [/asy]

1988 Tournament Of Towns, (179) 1

Determine the ratio of the bases (parallel sides) of the trapezoid for which there exists a line with $6$ points of intersection with the diagonals, lateral sides and extended bases cut $5$ equal segments? ( E . G . Gotman)

2010 Dutch IMO TST, 4

Let $ABCD$ be a square with circumcircle $\Gamma_1$. Let $P$ be a point on the arc $AC$ that also contains $B$. A circle $\Gamma_2$ touches $\Gamma_1$ in $P$ and also touches the diagonal $AC$ in $Q$. Let $R$ be a point on $\Gamma_2$ such that the line $DR$ touches $\Gamma_2$. Proof that $|DR| = |DA|$.

2016 Peru MO (ONEM), 1

Let $ABCD$ be a trapezoid of parallel bases $ BC$ and $AD$. If $\angle CAD = 2\angle CAB, BC = CD$ and $AC = AD$, determine all the possible values of the measure of the angle $\angle CAB$.

2014 Dutch Mathematical Olympiad, 2 juniors

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be a point on the line $AB$, distinct from $B$, such that $|CG| = |CB|$. Let $H$ be a point on the line $BC$, distinct from $B$, such that $|AB| =|AH|$. Prove that triangle $DGH$ is isosceles. [asy] unitsize(1.5 cm); pair A, B, C, D, G, H; A = (0,0); B = (2,0); D = (0.5,1.5); C = B + D - A; G = reflect(A,B)*(C) + C - B; H = reflect(B,C)*(H) + A - B; draw(H--A--D--C--G); draw(interp(A,G,-0.1)--interp(A,G,1.1)); draw(interp(C,H,-0.1)--interp(C,H,1.1)); draw(D--G--H--cycle, dashed); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, E); dot("$D$", D, NW); dot("$G$", G, NE); dot("$H$", H, SE); [/asy]

2018 Estonia Team Selection Test, 7

Let $AD$ be the altitude $ABC$ of an acute triangle. On the line $AD$ are chosen different points $E$ and $F$ so that $|DE |= |DF|$ and point $E$ is in the interior of triangle $ABC$. The circumcircle of triangle $BEF$ intersects $BC$ and $BA$ for second time at points $K$ and $M$ respectively. The circumcircle of the triangle $CEF$ intersects the $CB$ and $CA$ for the second time at points $L$ and $N$ respectively. Prove that the lines $AD, KM$ and $LN$ intersect at one point.

2011 Junior Balkan Team Selection Tests - Romania, 4

The measure of the angle $\angle A$ of the acute triangle $ABC$ is $60^o$, and $HI = HB$, where $I$ and $H$ are the incenter and the orthocenter of the triangle $ABC$. Find the measure of the angle $\angle B$.

2007 District Olympiad, 1

Point $O$ is the intersection of the perpendicular bisectors of the sides of the triangle $\vartriangle ABC$ . Let $D$ be the intersection of the line $AO$ with the segment $[BC]$. Knowing that $OD = BD = \frac 13 BC$, find the measures of the angles of the triangle $\vartriangle ABC$.

2003 All-Russian Olympiad Regional Round, 8.7

In triangle $ABC$, angle $C$ is a right angle. Found on the side $AC$ point $D$, and on the segment $BD$, point $K$ such that $\angle ABC = \angle KAD =\angle AKD$. Prove that $BK = 2DC$.

2018 Regional Olympiad of Mexico Center Zone, 2

Let $\vartriangle ABC$be a triangle and let $\Gamma$ its circumscribed circle. Let $M$ be the midpoint of the side $BC$ and let $D$ be the point of intersection of the line $AM$ with $\Gamma$. By $D$ a straight line is drawn parallel to $BC$, which intersects $\Gamma$ at a point $E$. Let $N$ be the midpoint of the segment $AE$ and let $P$ be the point of intersection of $CN$ with $AM$. Show that $AP = PC$.

2014 Contests, 3

(i) $ABC$ is a triangle with a right angle at $A$, and $P$ is a point on the hypotenuse $BC$. The line $AP$ produced beyond $P$ meets the line through $B$ which is perpendicular to $BC$ at $U$. Prove that $BU = BA$ if, and only if, $CP = CA$. (ii) $A$ is a point on the semicircle $CB$, and points $X$ and $Y$ are on the line segment $BC$. The line $AX$, produced beyond $X$, meets the line through $B$ which is perpendicular to $BC$ at $U$. Also the line $AY$, produced beyond $Y$, meets the line through $C$ which is perpendicular to $BC$ at $V$. Given that $BY = BA$ and $CX = CA$, determine the angle $\angle VAU$.

Denmark (Mohr) - geometry, 2023.4

In the $9$-gon $ABCDEFGHI$, all sides have equal lengths and all angles are equal. Prove that $|AB| + |AC| = |AE|$. [img]https://cdn.artofproblemsolving.com/attachments/6/2/8c82e8a87bf8a557baaf6ac72b3d18d2ba3965.png[/img]

2010 NZMOC Camp Selection Problems, 5

The diagonals of quadrilateral $ABCD$ intersect in point $E$. Given that $|AB| =|CE|$, $|BE| = |AD|$, and $\angle AED = \angle BAD$, determine the ratio $|BC|:|AD|$.

2021 Austrian MO Beginners' Competition, 2

A triangle $ABC$ with circumcenter $U$ is given, so that $\angle CBA = 60^o$ and $\angle CBU = 45^o$ apply. The straight lines $BU$ and $AC$ intersect at point $D$. Prove that $AD = DU$. (Karl Czakler)

2016 Saint Petersburg Mathematical Olympiad, 3

On the side $AB$ of the non-isosceles triangle $ABC$, let the points $P$ and $Q$ be so that $AC = AP$ and $BC = BQ$. The perpendicular bisector of the segment $PQ$ intersects the angle bisector of the $\angle C$ at the point $R$ (inside the triangle). Prove that $\angle ACB + \angle PRQ = 180^o$.