Found problems: 509
2010 Sharygin Geometry Olympiad, 3
Let $ABCD$ be a convex quadrilateral and $K$ be the common point of rays $AB$ and $DC$. There exists a point $P$ on the bisectrix of angle $AKD$ such that lines $BP$ and $CP$ bisect segments $AC$ and $BD$ respectively. Prove that $AB = CD$.
1997 Tournament Of Towns, (560) 1
$M$ and $N$ are the midpoints of the sides $AB$ and $AC$ of a triangle ABC respectively. $P$ and $Q$ are points on the sides $AB$ and $AC$ respectively such that the bisector of the angle $ACB$ also bisects the angle $MCP$, and the bisector of the angle $ABC$ also bisects the angle $NBQ$. If $AP = AQ$, does it follow that $ABC$ is isosceles?
(V Senderov)
2019 Czech-Polish-Slovak Junior Match, 2
Let $ABC$ be a triangle with centroid $T$. Denote by $M$ the midpoint of $BC$. Let $D$ be a point on the ray opposite to the ray $BA$ such that $AB = BD$. Similarly, let $E$ be a point on the ray opposite to the ray $CA$ such that $AC = CE$. The segments $T D$ and $T E$ intersect the side $BC$ in $P$ and $Q$, respectively. Show that the points $P, Q$ and $M$ split the segment $BC$ into four parts of equal length.
2003 Swedish Mathematical Competition, 5
Given two positive numbers $a, b$, how many non-congruent plane quadrilaterals are there such that $AB = a$, $BC = CD = DA = b$ and $\angle B = 90^o$ ?
1994 Tournament Of Towns, (404) 2
Two circles intersect at the points $A$ and $B$. Tangent lines drawn to both of the circles at the point $A$ intersect the circles at the points $M$ and $N$. The lines $BM$ and $BN$ intersect the circles once more at the points $P$ and $Q$ respectively. Prove that the segments $MP$ and $NQ$ are equal.
(I Nagel)
Cono Sur Shortlist - geometry, 1993.11
Let $\Gamma$ be a semicircle with center $O$ and diameter $AB$. $D$ is the midpoint of arc $AB$. On the ray $OD$, we take $E$ such that $OE = BD$. $BE$ intersects the semicircle at $F$ and $ P$ is the point on $AB$ such that $FP$ is perpendicular to $AB$. Prove that $BP=\frac13 AB$.
2008 Abels Math Contest (Norwegian MO) Final, 4b
A point $D$ lies on the side $BC$ , and a point $E$ on the side $AC$ , of the triangle $ABC$ , and $BD$ and $AE$ have the same length. The line through the centres of the circumscribed circles of the triangles $ADC$ and $BEC$ crosses $AC$ in $K$ and $BC$ in $L$. Show that $KC$ and $LC$ have the same length.
2000 Belarus Team Selection Test, 8.1
The diagonals of a convex quadrilateral $ABCD$ with $AB = AC = BD$ intersect at $P$, and $O$ and $I$ are the circumcenter and incenter of $\vartriangle ABP$, respectively. Prove that if $O \ne I$ then $OI$ and $CD$ are perpendicular
Swiss NMO - geometry, 2017.8
Let $ABC$ be an isosceles triangle with vertex $A$ and $AB> BC$. Let $k$ be the circle with center $A$ passsing through $B$ and $C$. Let $H$ be the second intersection of $k$ with the altitude of the triangle $ABC$ through $B$. Further let $G$ be the second intersection of $k$ with the median through $B$ in triangle $ABC$. Let $X$ be the intersection of the lines $AC$ and $GH$. Show that $C$ is the midpoint of $AX$.
2020 China Team Selection Test, 2
Given an isosceles triangle $\triangle ABC$, $AB=AC$. A line passes through $M$, the midpoint of $BC$, and intersects segment $AB$ and ray $CA$ at $D$ and $E$, respectively. Let $F$ be a point of $ME$ such that $EF=DM$, and $K$ be a point on $MD$. Let $\Gamma_1$ be the circle passes through $B,D,K$ and $\Gamma_2$ be the circle passes through $C,E,K$. $\Gamma_1$ and $\Gamma_2$ intersect again at $L \neq K$. Let $\omega_1$ and $\omega_2$ be the circumcircle of $\triangle LDE$ and $\triangle LKM$. Prove that, if $\omega_1$ and $\omega_2$ are symmetric wrt $L$, then $BF$ is perpendicular to $BC$.
2014 Flanders Math Olympiad, 3
Let $PQRS$ be a quadrilateral with $| P Q | = | QR | = | RS |$, $\angle Q= 110^o$ and $\angle R = 130^o$ . Determine $\angle P$ and $\angle S$ .
2015 Denmark MO - Mohr Contest, 3
Triangle $ABC$ is equilateral. The point $D$ lies on the extension of $AB$ beyond $B$, the point $E$ lies on the extension of $CB$ beyond $B$, and $|CD| = |DE|$. Prove that $|AD| = |BE|$.
[img]https://1.bp.blogspot.com/-QnAXFw3ijn0/XzR0YjqBQ3I/AAAAAAAAMU0/0TvhMQtBNjolYHtgXsQo2OPGJzEYSfCwACLcBGAsYHQ/s0/2015%2BMohr%2Bp3.png[/img]
2011 Sharygin Geometry Olympiad, 9
Let $H$ be the orthocenter of triangle $ABC$. The tangents to the circumcircles of triangles $CHB$ and $AHB$ at point $H$ meet $AC$ at points $A_1$ and $C_1$ respectively. Prove that $A_1H = C_1H$.
Kyiv City MO Seniors Round2 2010+ geometry, 2019.11.3.1
It is known that in the triangle $ABC$ the smallest side is $BC$. Let $X, Y, K$ and $L$ - points on the sides $AB, AC$ and on the rays $CB, BC$, respectively, are such that $BX = BK = BC =CY =CL$. The line $KX$ intersects the line $LY$ at the point $M$. Prove that the intersection point of the medians $\vartriangle KLM$ coincides with the center of the inscribed circle $\vartriangle ABC$.
2016 Hanoi Open Mathematics Competitions, 11
Let be given a triangle $ABC$, and let $I$ be the midpoint of $BC$. The straight line $d$ passing $I$ intersects $AB,AC$ at $M,N$ , respectively. The straight line $d'$ ($\ne d$) passing $I$ intersects $AB, AC$ at $Q, P$ , respectively. Suppose $M, P$ are on the same side of $BC$ and $MP , NQ$ intersect $BC$ at $E$ and $F$, respectively. Prove that $IE = I F$.
Indonesia MO Shortlist - geometry, g9
It is known that $ABCD$ is a parallelogram. The point $E$ is taken so that $BCED$ is a cyclic quadrilateral. Let $\ell$ be a line that passes through $A$, intersects the segment $DC$ at point $F$ and intersects the extension of the line $BC$ at $G$. Given $EF = EG = EC$. Prove that $\ell$ is the bisector of the angle $\angle BAD$.
2021 Saudi Arabia Training Tests, 5
Let $ABCD$ be a rectangle with $P$ lies on the segment $AC$. Denote $Q$ as a point on minor arc $PB$ of $(PAB)$ such that $QB = QC$. Denote $R$ as a point on minor arc $PD$ of $(PAD)$ such that $RC = RD$. The lines $CB$, $CD$ meet $(CQR)$ again at $M, N$ respectively. Prove that $BM = DN$.
by Tran Quang Hung
2013 Regional Competition For Advanced Students, 4
We call a pentagon [i]distinguished [/i] if either all side lengths or all angles are equal. We call it [i]very distinguished[/i] if in addition two of the other parts are equal. i.e. $5$ sides and $2$ angles or $2$ sides and $5$ angles.Show that every very distinguished pentagon has an axis of symmetry.
2007 Oral Moscow Geometry Olympiad, 2
An isosceles right-angled triangle $ABC$ is given. On the extensions of sides $AB$ and $AC$, behind vertices $B$ and $C$ equal segments $BK$ and $CL$ were laid. $E$ and F are the points of intersection of the segment $KL$ and the lines perpendicular to the $KC$ , passing through the points $B$ and $A$, respectively. Prove that $EF = FL$.
Kyiv City MO Seniors 2003+ geometry, 2012.11.3
Inside the triangle $ABC$ choose the point $M$, and on the side $BC$ - the point $K$ in such a way that $MK || AB$. The circle passing through the points $M, \, \, K, \, \, C,$ crosses the side $AC$ for the second time at the point $N$, a circle passing through the points $M, \, \, N, \, \, A, $ crosses the side $AB$ for the second time at the point $Q$. Prove that $BM = KQ$.
(Nagel Igor)
2021 Saudi Arabia JBMO TST, 2
In a triangle $ABC$, let $K$ be a point on the median $BM$ such that $CM = CK$. It turned out that $\angle CBM = 2\angle ABM$. Show that $BC = KM$.
2020 Regional Olympiad of Mexico West, 6
Let \( M \) be the midpoint of side \( BC \) of a scalene triangle \( ABC \). The circle passing through \( A \), \( B \) and \( M \) intersects side \( AC \) again at \( D \). The circle passing through \( A \), \( C \) and \( M \) cuts side \( AB \) again at \( E \). Let \( O \) be the circumcenter of triangle \( ADE \). Prove that \( OB=OC \).
2010 IFYM, Sozopol, 8
In the trapezoid $ABCD, AB // CD$ and the diagonals intersect at $O$. The points $P, Q$ are on $AD, BC$ respectively such that $\angle AP B = \angle CP D$ and $\angle AQB = \angle CQD$. Show that $OP = OQ$.
Indonesia Regional MO OSP SMA - geometry, 2007.1
Let $ABCD$ be a quadrilateral with $AB = BC = CD = DA$.
(a) Prove that point A must be outside of triangle $BCD$.
(b) Prove that each pair of opposite sides on $ABCD$ is always parallel.
Novosibirsk Oral Geo Oly VIII, 2020.4
Point $P$ is chosen inside triangle $ABC$ so that $\angle APC+\angle ABC=180^o$ and $BC=AP.$ On the side $AB$, a point $K$ is chosen such that $AK = KB + PC$. Prove that $CK \perp AB$.