This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 86

1978 IMO Shortlist, 2

Two identically oriented equilateral triangles, $ABC$ with center $S$ and $A'B'C$, are given in the plane. We also have $A' \neq S$ and $B' \neq S$. If $M$ is the midpoint of $A'B$ and $N$ the midpoint of $AB'$, prove that the triangles $SB'M$ and $SA'N$ are similar.

2009 Danube Mathematical Competition, 3

Let $n$ be a natural number. Determine the minimal number of equilateral triangles of side $1$ to cover the surface of an equilateral triangle of side $n +\frac{1}{2n}$.

1994 Nordic, 1

Let $O$ be an interior point in the equilateral triangle $ABC$, of side length $a$. The lines $AO, BO$, and $CO$ intersect the sides of the triangle in the points $A_1, B_1$, and $C_1$. Show that $OA_1 + OB_1 + OC_1 < a$.

2019 Brazil Team Selection Test, 2

Let $ABC$ be a triangle, and $A_1$, $B_1$, $C_1$ points on the sides $BC$, $CA$, $AB$, respectively, such that the triangle $A_1B_1C_1$ is equilateral. Let $I_1$ and $\omega_1$ be the incenter and the incircle of $AB_1C_1$. Define $I_2$, $\omega_2$ and $I_3$, $\omega_3$ similarly, with respect to the triangles $BA_1C_1$ and $CA_1B_1$, respectively. Let $l_1 \neq BC$ be the external tangent line to $\omega_2$ and $\omega_3$. Define $l_2$ and $l_3$ similarly, with respect to the pairs $\omega_1$, $\omega_3$ and $\omega_1$, $\omega_2$. Knowing that $A_1I_2 = A_1I_3$, show that the lines $l_1$, $l_2$, $l_3$ are concurrent.

2024 Junior Balkan Team Selection Tests - Romania, P2

Let $M$ be the midpoint of the side $AD$ of the square $ABCD.$ Consider the equilateral triangles $DFM{}$ and $BFE{}$ such that $F$ lies in the interior of $ABCD$ and the lines $EF$ and $BC$ are concurrent. Denote by $P{}$ the midpoint of $ME.$ Prove that" [list=a] [*]The point $P$ lies on the line $AC.$ [*]The halfline $PM$ is the bisector of the angle $APF.$ [/list] [i]Adrian Bud[/i]

May Olympiad L2 - geometry, 1999.4

Let $ABC$ be an equilateral triangle. $M$ is the midpoint of segment $AB$ and $N$ is the midpoint of segment $BC$. Let $P$ be the point outside $ABC$ such that the triangle $ACP$ is isosceles and right in $P$. $PM$ and $AN$ are cut in $I$. Prove that $CI$ is the bisector of the angle $MCA$ .

1986 IMO, 2

Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.

2006 Sharygin Geometry Olympiad, 8.1

Inscribe the equilateral triangle of the largest perimeter in a given semicircle.

2015 Dutch IMO TST, 3

An equilateral triangle $ABC$ is given. On the line through $B$ parallel to $AC$ there is a point $D$, such that $D$ and $C$ are on the same side of the line $AB$. The perpendicular bisector of $CD$ intersects the line $AB$ in $E$. Prove that triangle $CDE$ is equilateral.

2005 May Olympiad, 4

There are two paper figures: an equilateral triangle and a rectangle. The height of rectangle is equal to the height of the triangle and the base of the rectangle is equal to the base of the triangle. Divide the triangle into three parts and the rectangle into two, using straight cuts, so that with the five pieces can be assembled, without gaps or overlays, a equilateral triangle. To assemble the figure, each part can be rotated and / or turned around.

2022 Iranian Geometry Olympiad, 5

a) Do there exist four equilateral triangles in the plane such that each two have exactly one vertex in common, and every point in the plane lies on the boundary of at most two of them? b) Do there exist four squares in the plane such that each two have exactly one vertex in common, and every point in the plane lies on the boundary of at most two of them? (Note that in both parts, there is no assumption on the intersection of interior of polygons.) [i]Proposed by Hesam Rajabzadeh[/i]

2021 Oral Moscow Geometry Olympiad, 6

$ABCD$ is a square and $XYZ$ is an equilateral triangle such that $X$ lies on $AB$, $Y$ lies on $BC$ and $Z$ lies on $DA$. Line through the centers of $ABCD$ and $XYZ$ intersects $CD$ at $T$. Find angle $CTY$

2019 Brazil Team Selection Test, 1

Let $ABC$ be an acute triangle, with $\angle A > 60^\circ$, and let $H$ be it's orthocenter. Let $M$ and $N$ be points on $AB$ and $AC$, respectively, such that $\angle HMB = \angle HNC = 60^\circ$. Also, let $O$ be the circuncenter of $HMN$ and $D$ be a point on the semiplane determined by $BC$ that contains $A$ in such a way that $DBC$ is equilateral. Prove that $H$, $O$ and $D$ are collinear.

2023 IMO, 6

Let $ABC$ be an equilateral triangle. Let $A_1,B_1,C_1$ be interior points of $ABC$ such that $BA_1=A_1C$, $CB_1=B_1A$, $AC_1=C_1B$, and $$\angle BA_1C+\angle CB_1A+\angle AC_1B=480^\circ$$ Let $BC_1$ and $CB_1$ meet at $A_2,$ let $CA_1$ and $AC_1$ meet at $B_2,$ and let $AB_1$ and $BA_1$ meet at $C_2.$ Prove that if triangle $A_1B_1C_1$ is scalene, then the three circumcircles of triangles $AA_1A_2, BB_1B_2$ and $CC_1C_2$ all pass through two common points. (Note: a scalene triangle is one where no two sides have equal length.) [i]Proposed by Ankan Bhattacharya, USA[/i]

2015 Sharygin Geometry Olympiad, P4

In a parallelogram $ABCD$ the trisectors of angles $A$ and $B$ are drawn. Let $O$ be the common points of the trisectors nearest to $AB$. Let $AO$ meet the second trisector of angle $B$ at point $A_1$, and let $BO$ meet the second trisector of angle $A$ at point $B_1$. Let $M$ be the midpoint of $A_1B_1$. Line $MO$ meets $AB$ at point $N$ Prove that triangle $A_1B_1N$ is equilateral.

2023 Grosman Mathematical Olympiad, 7

The plane is colored with two colors so that the following property holds: for each real $a>0$ there is an equilateral triangle of side length $a$ whose $3$ vertices are of the same color. Prove that for any three numbers $a,b,c>0$ for which the sum of any two is greater than the third there is a triangle with sides $a$, $b$, and $c$ whose $3$ vertices are of the same color.

2012 IFYM, Sozopol, 6

Let $A_1 B_1 C_1$ and $A_2 B_2 C_2$ be two oppositely oriented concentric equilateral triangles. Prove that the lines $A_1 A_2$ , $B_1 B_2$ , and $C_1 C_2$ intersect in one point.

2008 Junior Balkan Team Selection Tests - Moldova, 7

In an acute triangle $ABC$, points $A_1, B_1, C_1$ are the midpoints of the sides $BC, AC, AB$, respectively. It is known that $AA_1 = d(A_1, AB) + d(A_1, AC)$, $BB1 = d(B_1, AB) + d(A_1, BC)$, $CC_1 = d(C_1, AC) + d(C_1, BC)$, where $d(X, Y Z)$ denotes the distance from point $X$ to the line $YZ$. Prove, that triangle $ABC$ is equilateral.

1987 Spain Mathematical Olympiad, 1

Let $a, b, c$ be the side lengths of a scalene triangle and let $O_a, O_b$ and $O_c$ be three concentric circles with radii $a, b$ and $c$ respectively. (a) How many equilateral triangles with different areas can be constructed such that the lines containing the sides are tangent to the circles? (b) Find the possible areas of such triangles.

2007 Sharygin Geometry Olympiad, 1

A triangle is cut into several (not less than two) triangles. One of them is isosceles (not equilateral), and all others are equilateral. Determine the angles of the original triangle.

1993 Austrian-Polish Competition, 9

Point $P$ is taken on the extension of side $AB$ of an equilateral triangle $ABC$ so that $A$ is between $B$ and $P$. Denote by $a$ the side length of triangle $ABC$, by $r_1$ the inradius of triangle $PAC$, and by $r_2$ the exradius of triangle $PBC$ opposite $P$. Find the sum $r_1+r_2$ as a function in $a$.

2020 Dürer Math Competition (First Round), P4

Let $ABC$ be an acute triangle with side $AB$ of length $1$. Say we reflect the points $A$ and $B$ across the midpoints of $BC$ and $AC$, respectively to obtain the points $A’$ and $B’$ . Assume that the orthocenters of triangles $ ABC$, $A’BC$ and $B’AC$ form an equilateral triangle. a) Prove that triangle $ABC$ is isosceles. b) What is the length of the altitude of $ABC$ through $C$?

2002 Tuymaada Olympiad, 2

Points on the sides $ BC $, $ CA $ and $ AB $ of the triangle $ ABC $ are respectively $ A_1 $, $ B_1 $ and $ C_1 $ such that $ AC_1: C_1B = BA_1: A_1C = CB_1: B_1A = 2: 1 $. Prove that if triangle $ A_1B_1C_1 $ is equilateral, then triangle $ ABC $ is also equilateral.

May Olympiad L1 - geometry, 2014.4

Let $ABC$ be a right triangle and isosceles, with $\angle C = 90^o$. Let $M$ be the midpoint of $AB$ and $N$ the midpoint of $AC$. Let $ P$ be such that $MNP$ is an equilateral triangle with $ P$ inside the quadrilateral $MBCN$. Calculate the measure of $\angle CAP$

2012 IFYM, Sozopol, 8

An equilateral triangle $ABC$ is inscribed in a square with side 1 (each vertex of the triangle is on a side of the square and no two are on the same side). Determine the greatest and smallest value of the side of $\Delta ABC$.