This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1978 Chisinau City MO, 167

Prove that the largest area of a triangle with sides $a, b, c$ satisfying the relation $a^2 +b^2 c^2 = 3m^2$, equals to $\frac{\sqrt3}{4}m^2$.

1998 Yugoslav Team Selection Test, Problem 2

In a convex quadrilateral $ABCD$, the diagonal $AC$ intersects the diagonal $BD$ at its midpoint $S$. The radii of incircles of triangles $ABS,BCS,CDS,DAS$ are $r_1,r_2,r_3,r_4$, respectively. Prove that $$|r_1-r_2+r_3-r_4|\le\frac18|AB-BC+CD-DA|.$$

2019 Yasinsky Geometry Olympiad, p6

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$). (Mykola Moroz)

2006 Sharygin Geometry Olympiad, 21

On the sides $AB, BC, CA$ of triangle $ABC$, points $C', A', B'$ are taken. Prove that for the areas of the corresponding triangles, the inequality holds: $$S_{ABC}S^2_{A'B'C'}\ge 4S_{AB'C'}S_{BC'A'}S_{CA'B'}$$ and equality is achieved if and only if the lines $AA', BB', CC'$ intersect at one point.

1996 Estonia Team Selection Test, 2

Let $a,b,c$ be the sides of a triangle, $\alpha ,\beta ,\gamma$ the corresponding angles and $r$ the inradius. Prove that $$a\cdot sin\alpha+b\cdot sin\beta+c\cdot sin\gamma\geq 9r$$

1902 Eotvos Mathematical Competition, 3

The area $T$ and an angle $\gamma$ of a triangle are given. Determine the lengths of the sides $a$ and $b$ so that the side $c$, opposite the angle $\gamma$, is as short as possible.

2014 Thailand TSTST, 2

In a triangle $ABC$, let $x=\cos\frac{A-B}{2},y=\cos\frac{B-C}{2},z=\cos\frac{C-A}{2}$. Prove that $$x^4+y^4+z^2\leq 1+2x^2y^2z^2.$$

Geometry Mathley 2011-12, 11.1

Let $ABCDEF$ be a hexagon with sides $AB,CD,EF$ being equal to $m$ units, sides $BC,DE, FA$ being equal to $n$ units. The diagonals $AD,BE,CF$ have lengths $x, y$, and $z$ units. Prove the inequality $$\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx} \ge \frac{3}{(m+ n)^2}$$ Nguyễn Văn Quý

2010 Saudi Arabia BMO TST, 2

Let $ABC$ be an acute triangle and let $MNPQ$ be a square inscribed in the triangle such that $M ,N \in BC$, $P \in AC$, $Q \in AB$. Prove that $area \, [MNPQ] \le \frac12 area\, [ABC]$.

1974 Spain Mathematical Olympiad, 2

In a metallic disk, a circular sector is removed, so that with the remaining can form a conical glass of maximum volume. Calculate, in radians, the angle of the sector that is removed. [hide=original wording]En un disco metalico se quita un sector circular, de modo que con la parte restante se pueda formar un vaso c´onico de volumen maximo. Calcular, en radianes, el angulo del sector que se quita.[/hide]

2007 Sharygin Geometry Olympiad, 19

Into an angle $A$ of size $a$, a circle is inscribed tangent to its sides at points $B$ and $C$. A line tangent to this circle at a point M meets the segments $AB$ and $AC$ at points $P$ and $Q$ respectively. What is the minimum $a$ such that the inequality $S_{PAQ}<S_{BMC}$ is possible?

1968 Dutch Mathematical Olympiad, 1

On the base $AB$ of the isosceles triangle $ABC$, lies the point $P$ such that $AP : PB = 1 : 2$. Determine the minimum of $\angle ACP$.

1993 IMO Shortlist, 3

Let triangle $ABC$ be such that its circumradius is $R = 1.$ Let $r$ be the inradius of $ABC$ and let $p$ be the inradius of the orthic triangle $A'B'C'$ of triangle $ABC.$ Prove that \[ p \leq 1 - \frac{1}{3 \cdot (1+r)^2}. \] [hide="Similar Problem posted by Pascual2005"] Let $ABC$ be a triangle with circumradius $R$ and inradius $r$. If $p$ is the inradius of the orthic triangle of triangle $ABC$, show that $\frac{p}{R} \leq 1 - \frac{\left(1+\frac{r}{R}\right)^2}{3}$. [i]Note.[/i] The orthic triangle of triangle $ABC$ is defined as the triangle whose vertices are the feet of the altitudes of triangle $ABC$. [b]SOLUTION 1 by mecrazywong:[/b] $p=2R\cos A\cos B\cos C,1+\frac{r}{R}=1+4\sin A/2\sin B/2\sin C/2=\cos A+\cos B+\cos C$. Thus, the ineqaulity is equivalent to $6\cos A\cos B\cos C+(\cos A+\cos B+\cos C)^2\le3$. But this is easy since $\cos A+\cos B+\cos C\le3/2,\cos A\cos B\cos C\le1/8$. [b]SOLUTION 2 by Virgil Nicula:[/b] I note the inradius $r'$ of a orthic triangle. Must prove the inequality $\frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.$ From the wellknown relations $r'=2R\cos A\cos B\cos C$ and $\cos A\cos B\cos C\le \frac 18$ results $\frac{r'}{R}\le \frac 14.$ But $\frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longleftrightarrow \frac 13\left( 1+\frac rR\right)^2\le \frac 34\Longleftrightarrow$ $\left(1+\frac rR\right)^2\le \left(\frac 32\right)^2\Longleftrightarrow 1+\frac rR\le \frac 32\Longleftrightarrow \frac rR\le \frac 12\Longleftrightarrow 2r\le R$ (true). Therefore, $\frac{r'}{R}\le \frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longrightarrow \frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.$ [b]SOLUTION 3 by darij grinberg:[/b] I know this is not quite an ML reference, but the problem was discussed in Hyacinthos messages #6951, #6978, #6981, #6982, #6985, #6986 (particularly the last message). [/hide]

1995 IMO Shortlist, 6

Let $ A_1A_2A_3A_4$ be a tetrahedron, $ G$ its centroid, and $ A'_1, A'_2, A'_3,$ and $ A'_4$ the points where the circumsphere of $ A_1A_2A_3A_4$ intersects $ GA_1,GA_2,GA_3,$ and $ GA_4,$ respectively. Prove that \[ GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_ \cdot4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4\] and \[ \frac{1}{GA'_1} \plus{} \frac{1}{GA'_2} \plus{} \frac{1}{GA'_3} \plus{} \frac{1}{GA'_4} \leq \frac{1}{GA_1} \plus{} \frac{1}{GA_2} \plus{} \frac{1}{GA_3} \plus{} \frac{1}{GA_4}.\]

Durer Math Competition CD Finals - geometry, 2008.C2

Given a triangle with sides $a, b, c$ and medians $s_a, s_b, s_c$ respectively. Prove the following inequality: $$a + b + c> s_a + s_b + s_c> \frac34 (a + b + c) $$

2020 Saint Petersburg Mathematical Olympiad, 5.

The altitudes $BB_1$ and $CC_1$ of the acute triangle $\triangle ABC$ intersect at $H$. The circle centered at $O_b$ passes through points $A,C_1$, and the midpoint of $BH$. The circle centered at $O_c$ passes through $A,B_1$ and the midpoint of $CH$. Prove that $B_1 O_b +C_1O_c > \frac{BC}{4}$

2020 Sharygin Geometry Olympiad, 13

Let $I$ be the incenter of triangle $ABC$. The excircle with center $I_A$ touches the side $BC$ at point $A'$. The line $l$ passing through $I$ and perpendicular to $BI$ meets $I_AA'$ at point $K$ lying on the medial line parallel to $BC$. Prove that $\angle B \leq 60^\circ$.

2020 Estonia Team Selection Test, 2

The radius of the circumcircle of triangle $\Delta$ is $R$ and the radius of the inscribed circle is $r$. Prove that a circle of radius $R + r$ has an area more than $5$ times the area of triangle $\Delta$.

1979 IMO Shortlist, 10

Show that for any vectors $a, b$ in Euclidean space, \[|a \times b|^3 \leq \frac{3 \sqrt 3}{8} |a|^2 |b|^2 |a-b|^2\] Remark. Here $\times$ denotes the vector product.

1970 IMO, 2

In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?

1957 Moscow Mathematical Olympiad, 361

The lengths, $a$ and $b$, of two sides of a triangle are known. (a) What length should the third side be, in order for the largest angle of the triangle to be of the least possible value? (b) What length should the third side be in order for the smallest angle of the triangle to be of the greatest possible value?

2017 Hanoi Open Mathematics Competitions, 11

Let $ABC$ be an equilateral triangle, and let $P$ stand for an arbitrary point inside the triangle. Is it true that $| \angle PAB - \angle PAC| \ge | \angle PBC - \angle PCB|$ ?

1998 India National Olympiad, 4

Suppose $ABCD$ is a cyclic quadrilateral inscribed in a circle of radius one unit. If $AB \cdot BC \cdot CD \cdot DA \geq 4$, prove that $ABCD$ is a square.

2019 Jozsef Wildt International Math Competition, W. 69

Denote $\overline{w_a}, \overline{w_b}, \overline{w_c}$ the external angle-bisectors in triangle $ABC$, prove that $$\sum \limits_{cyc} \frac{1}{w_a}\leq \sqrt{\frac{(s^2 - r^2 - 4Rr)(8R^2 - s^2 - r^2 - 2Rr)}{8s^2R^2r}}$$

2025 Sharygin Geometry Olympiad, 24

The insphere of a tetrahedron $ABCD$ touches the faces $ABC$, $BCD$, $CDA$, $DAB$ at $D^{\prime}$, $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ respectively. Denote by $S_{AB}$ the area of the triangle $AC^{\prime}B^{\prime}$. Define similarly $S_{AC}$, $S_{BC},$ $S_{AD}$, $S_{BD}$, $S_{CD}$. Prove that there exists a triangle with sidelengths $\sqrt{S_{AB}S_{CD}}$, $\sqrt{S_{AC}S_{BD}}$ , $\sqrt{S_{AD}S_{BC}}$. Proposed by: S.Arutyunyan