This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1989 Federal Competition For Advanced Students, 4

Tags: geometry
Prove that for any triangle each exradius is less than four times the circumradius.

2014 May Olympiad, 2

In a convex quadrilateral $ABCD$, let $M$, $N$, $P$, and $Q$ be the midpoints of $AB$, $BC$, $CD$, and $DA$ respectively. If $MP$ and $NQ$ divide $ABCD$ in four quadrilaterals with the same area, prove that $ABCD$ is a parallelogram.

1990 Spain Mathematical Olympiad, 5

On the sides $BC,CA$ and $AB$ of a triangle $ABC$ of area $S$ are taken points $A' ,B' ,C'$ respectively such that $AC' /AB = BA' /BC = CB' /CA = p$, where $0 < p < 1$ is variable. (a) Find the area of triangle $A' B' C'$ in terms of $ p$. (b) Find the value of $p$ which minimizes this area. (c) Find the locus of the intersection point $P$ of the lines through $A' $ and $C'$ parallel to $AB$ and $AC$ respectively.

2015 AMC 12/AHSME, 19

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible? $\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

2012 Sharygin Geometry Olympiad, 14

Tags: ratio , geometry
In a convex quadrilateral $ABCD$ suppose $AC \cap BD = O$ and $M$ is the midpoint of $BC$. Let $MO \cap AD = E$. Prove that $\frac{AE}{ED} = \frac{S_{\triangle ABO}}{S_{\triangle CDO}}$.

1988 China Team Selection Test, 2

Let $ABCD$ be a trapezium $AB // CD,$ $M$ and $N$ are fixed points on $AB,$ $P$ is a variable point on $CD$. $E = DN \cap AP$, $F = DN \cap MC$, $G = MC \cap PB$, $DP = \lambda \cdot CD$. Find the value of $\lambda$ for which the area of quadrilateral $PEFG$ is maximum.

2010 Contests, 3

Points $A', B', C'$ lie on sides $BC, CA, AB$ of triangle $ABC.$ for a point $X$ one has $\angle AXB =\angle A'C'B' + \angle ACB$ and $\angle BXC = \angle B'A'C' +\angle BAC.$ Prove that the quadrilateral $XA'BC'$ is cyclic.

1993 Tournament Of Towns, (367) 6

Tags: algebra , geometry
The width of a long winding river is not greater than $1$ km. This means by definition that from any point of each bank of the river one can reach the other bank swimming $1$ km or less. Is it true that a boat can move along the river so that its distances from both banks are never greater than (a) $0.7$ km? (b) $0.8$ km? (Grigory Kondakov, Moscow) You may assume that the banks consist of segments and arcs of circles.

1986 All Soviet Union Mathematical Olympiad, 434

Tags: geometry , vector , polygon
Given a regular $n$-gon $A_1A_2...A_n$. Prove that if a) $n$ is even number, than for the arbitrary point $M$ in the plane, it is possible to choose signs in an expression $$\pm \overrightarrow{MA_1} \pm \overrightarrow{MA_2} \pm ... \pm \overrightarrow{MA_n}$$to make it equal to the zero vector . b) $n$ is odd, than the abovementioned expression equals to the zero vector for the finite set of $M$ points only.

1998 Dutch Mathematical Olympiad, 4

Tags: geometry , rhombus , vector
Let $ABCD$ be a convex quadrilateral such that $AC \perp BD$. (a) Prove that $AB^2 + CD^2 = BC^2 + DA^2$. (b) Let $PQRS$ be a convex quadrilateral such that $PQ = AB$, $QR = BC$, $RS = CD$ and $SP = DA$. Prove that $PR \perp QS$.

1982 Austrian-Polish Competition, 8

Let $P$ be a point inside a regular tetrahedron ABCD with edge length $1$. Show that $$d(P,AB)+d(P,AC)+d(P,AD)+d(P,BC)+d(P,BD)+d(P,CD) \ge \frac{3}{2} \sqrt2$$ , with equality only when $P$ is the centroid of $ABCD$. Here $d(P,XY)$ denotes the distance from point $P$ to line $XY$.

2016 ELMO Problems, 2

Tags: geometry
Oscar is drawing diagrams with trash can lids and sticks. He draws a triangle $ABC$ and a point $D$ such that $DB$ and $DC$ are tangent to the circumcircle of $ABC$. Let $B'$ be the reflection of $B$ over $AC$ and $C'$ be the reflection of $C$ over $AB$. If $O$ is the circumcenter of $DB'C'$, help Oscar prove that $AO$ is perpendicular to $BC$. [i]James Lin[/i]

2022 New Zealand MO, 1

$ABCD$ is a rectangle with side lengths $AB = CD = 1$ and $BC = DA = 2$. Let $ M$ be the midpoint of $AD$. Point $P$ lies on the opposite side of line $MB$ to $A$, such that triangle $MBP$ is equilateral. Find the value of $\angle PCB$.

II Soros Olympiad 1995 - 96 (Russia), 10.4

Find the equation of the line tangent to the parabola $y = 1/3(x^2-2x+4)$ and a circle of unit radius centered at the origin. (List all solutions.)

Russian TST 2017, P3

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $\angle ABC = \angle ADC < 90^{\circ}$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $E$ and $F$ respectively, and meet each other at point $P$. Let $M$ be the midpoint of $AC$ and let $\omega$ be the circumcircle of triangle $BPD$. Segments $BM$ and $DM$ intersect $\omega$ again at $X$ and $Y$ respectively. Denote by $Q$ the intersection point of lines $XE$ and $YF$. Prove that $PQ \perp AC$.

1989 Chile National Olympiad, 3

In a right triangle with legs $a$, $b$ and hypotenuse $c$, draw semicircles with diameters on the sides of the triangle as indicated in the figure. The purple areas have values $X,Y$ . Calculate $X + Y$. [img]https://cdn.artofproblemsolving.com/attachments/1/a/5086dc7172516b0a986ef1af192c15eba4d6fc.png[/img]

2016 Sharygin Geometry Olympiad, 3

Tags: geometry
Let $O$ and $I$ be the circumcenter and incenter of triangle $ABC$. The perpendicular from $I$ to $OI$ meets $AB$ and the external bisector of angle $C$ at points $X$ and $Y$ respectively. In what ratio does $I$ divide the segment $XY$?

1985 Spain Mathematical Olympiad, 1

Let $f : P\to P$ be a bijective map from a plane $P$ to itself such that: (i) $f (r)$ is a line for every line $r$, (ii) $f (r) $ is parallel to $r$ for every line $r$. What possible transformations can $f$ be?

2020 Balkan MO Shortlist, G3

Let $ABC$ be a triangle. On the sides $BC$, $CA$, $AB$ of the triangle, construct outwardly three squares with centres $O_a$, $O_b$, $O_c$ respectively. Let $\omega$ be the circumcircle of $\vartriangle O_aO_bO_c$. Given that $A$ lies on $\omega$, prove that the centre of $\omega$ lies on the perimeter of $\vartriangle ABC$. [i]Sam Bealing, United Kingdom[/i]

2017 Novosibirsk Oral Olympiad in Geometry, 6

In trapezoid $ABCD$, diagonal $AC$ is the bisector of angle $A$. Point $K$ is the midpoint of diagonal $AC$. It is known that $DC = DK$. Find the ratio of the bases $AD: BC$.

2012 Czech-Polish-Slovak Junior Match, 2

On the circle $k$, the points $A,B$ are given, while $AB$ is not the diameter of the circle $k$. Point $C$ moves along the long arc $AB$ of circle $k$ so that the triangle $ABC$ is acute. Let $D,E$ be the feet of the altitudes from $A, B$ respectively. Let $F$ be the projection of point $D$ on line $AC$ and $G$ be the projection of point $E$ on line $BC$. (a) Prove that the lines $AB$ and $FG$ are parallel. (b) Determine the set of midpoints $S$ of segment $FG$ while along all allowable positions of point $C$.

2008 ITest, 25

A cube has edges of length $120\text{ cm}$. The cube gets chopped up into some number of smaller cubes, all of equal size, such that each edge of one of the smaller cubes has an integer length. One of those smaller cubes is then chopped up into some number of $\textit{even smaller}$ cubes, all of equal size. If the edge length of one of those $\textit{even smaller}$ cubes is $n\text{ cm}$, where $n$ is an integer, find the number of possible values of $n$.

1995 Italy TST, 2

Twenty-one rectangles of size $3\times 1$ are placed on an $8\times 8$ chessboard, leaving only one free unit square. What position can the free square lie at?

KoMaL A Problems 2021/2022, A. 806

Four distinct lines are given in the plane, which are not concurrent and no three of which are parallel. Prove that it is possible to find four points in the plane, $A,B,C,$ and $D$ with the following properties: [list=1] [*]$A,B,C,$ and $D$ are collinear in this order; [*]$AB=BC=CD$; [*]with an appropriate order of the four given lines, $A$ is on the first, $B$ is on the second, $C$ is on the third and $D$ is on the fourth line. [/list] [i]Proposed by Kada Williams, Cambridge[/i]

2007 Korea - Final Round, 5

For the vertex $ A$ of a triangle $ ABC$, let $ l_a$ be the distance between the projections on $ AB$ and $ AC$ of the intersection of the angle bisector of ∠$ A$ with side $ BC$. Define $ l_b$ and $ l_c$ analogously. If $ l$ is the perimeter of triangle $ ABC$, prove that $ \frac{l_a l_b l_c}{l^3}\le\frac{1}{64}$.