This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1998 National Olympiad First Round, 7

Find the minimal value of integer $ n$ that guarantees: Among $ n$ sets, there exits at least three sets such that any of them does not include any other; or there exits at least three sets such that any two of them includes the other. $\textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 8$

2014 Saudi Arabia BMO TST, 4

Let $ABC$ be a triangle with $\angle B \le \angle C$, $I$ its incenter and $D$ the intersection point of line $AI$ with side $BC$. Let $M$ and $N$ be points on sides $BA$ and $CA$, respectively, such that $BM = BD$ and $CN = CD$. The circumcircle of triangle $CMN$ intersects again line $BC$ at $P$. Prove that quadrilateral $DIMP$ is cyclic.

2013 Estonia Team Selection Test, 4

Let $D$ be the point different from $B$ on the hypotenuse $AB$ of a right triangle $ABC$ such that $|CB| = |CD|$. Let $O$ be the circumcenter of triangle $ACD$. Rays $OD$ and $CB$ intersect at point $P$, and the line through point $O$ perpendicular to side AB and ray $CD$ intersect at point $Q$. Points $A, C, P, Q$ are concyclic. Does this imply that $ACPQ$ is a square?

1962 Leningrad Math Olympiad, 7.5*

The circle is divided into $49$ areas so that no three areas touch at one point. The resulting “map” is colored in three colors so that no two adjacent areas have the same color. The border of two areas is considered to be colored in both colors. Prove that on the circle there are two diametrically opposite points, colored in one color.

2014 Macedonia National Olympiad, 5

From an equilateral triangle with side 2014 we cut off another equilateral triangle with side 214, such that both triangles have one common vertex and two of the side of the smaller triangles lie on two of the side of the bigger triangle. Is it possible to cover this figure with figures in the picture without overlapping (rotation is allowed) if all figures are made of equilateral triangles with side 1? Explain the answer! [asy] import olympiad; unitsize(20); pair A,B,C,D,E,F,G,H; A=(0,0); B=(1,0); C=rotate(60)*B; D=rotate(60)*C; E=rotate(60)*D; F=rotate(60)*E; G=rotate(60)*F; draw(A--B); draw(A--C); draw(A--D); draw(A--E); draw(A--F); draw(A--G); draw(B--C--D--E--F--G--B); A=(2,0); B=A+(1,0); C=A+rotate(60)*(B-A); D=A+rotate(60)*(C-A); E=A+rotate(120)*(D-A); F=A+rotate(60)*(E-A); G=2*F-E; H=2*C-D; draw(A--D--C--A--B--C--H--B--G--F--E--A--F--B); A=(4,0); B=A+(1,0); C=A+rotate(-60)*(B-A); D=B+rotate(60)*(C-B); E=B+rotate(60)*(D-B); F=B+rotate(60)*(E-B); G=E+rotate(60)*(D-E); H=E+rotate(60)*(G-E); draw(A--B--C--A); draw(C--D--B); draw(D--E--B); draw(B--F--E); draw(E--G--D); draw(E--H--G); A=(8.5,0.5); B=A+(1,0); C=A+rotate(60)*(B-A); D=A+rotate(60)*(C-A); E=A+rotate(60)*(D-A); F=A+rotate(60)*(E-A); G=A+rotate(60)*(F-A); H=G+rotate(60)*(F-G); draw(A--B); draw(A--C); draw(A--D); draw(A--E); draw(A--F); draw(A--G); draw(B--C); draw(D--E--F--G--B); draw(G--H--F);[/asy]

1985 Canada National Olympiad, 3

Let $P_1$ and $P_2$ be regular polygons of 1985 sides and perimeters $x$ and $y$ respectively. Each side of $P_1$ is tangent to a given circle of circumference $c$ and this circle passes through each vertex of $P_2$. Prove $x + y \ge 2c$. (You may assume that $\tan \theta \ge \theta$ for $0 \le \theta < \frac{\pi}{2}$.)

1988 IMO Longlists, 23

In a right-angled triangle $ ABC$ let $ AD$ be the altitude drawn to the hypotenuse and let the straight line joining the incentres of the triangles $ ABD, ACD$ intersect the sides $ AB, AC$ at the points $ K,L$ respectively. If $ E$ and $ E_1$ dnote the areas of triangles $ ABC$ and $ AKL$ respectively, show that \[ \frac {E}{E_1} \geq 2. \]

2020 Princeton University Math Competition, A3/B5

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral with circumcenter $O$ and radius $10$. Let sides $AB$, $BC$, $CD$, and $DA$ have midpoints $M, N, P$, and $Q$, respectively. If $MP = NQ$ and $OM + OP = 16$, then what is the area of triangle $\vartriangle OAB$?

2018 Kyiv Mathematical Festival, 3

A circle is divided by $2018$ points into equal parts. Two players delete these points in turns. A player loses, if after his turn it is possible to draw a diameter of the circle such that there are no undeleted points on one side of it. Which player has a winning strategy?

2007 Germany Team Selection Test, 2

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2005 Sharygin Geometry Olympiad, 10.2

A triangle can be cut into three similar triangles. Prove that it can be cut into any number of triangles similar to each other.

2020 Estonia Team Selection Test, 2

Let $n$ be an integer, $n \ge 3$. Select $n$ points on the plane, none of which are three on the same line. Consider all triangles with vertices at selected points, denote the smallest of all the interior angles of these triangles by the variable $\alpha$. Find the largest possible value of $\alpha$ and identify all the selected $n$ point placements for which the max occurs.

MMATHS Mathathon Rounds, 2019

[u]Round 1 [/u] [b]p1.[/b] A small pizza costs $\$4$ and has $6$ slices. A large pizza costs $\$9$ and has $14$ slices. If the MMATHS organizers got at least $400$ slices of pizza (having extra is okay) as cheaply as possible, how many large pizzas did they buy? [b]p2.[/b] Rachel flips a fair coin until she gets a tails. What is the probability that she gets an even number of heads before the tails? [b]p3.[/b] Find the unique positive integer $n$ that satisfies $n! \cdot (n + 1)! = (n + 4)!$. [u]Round 2 [/u] [b]p4.[/b] The Portland Malt Shoppe stocks $10$ ice cream flavors and $8$ mix-ins. A milkshake consists of exactly $1$ flavor of ice cream and between $1$ and $3$ mix-ins. (Mix-ins can be repeated, the number of each mix-in matters, and the order of the mix-ins doesn’t matter.) How many different milkshakes can be ordered? [b]p5.[/b] Find the minimum possible value of the expression $(x)^2 + (x + 3)^4 + (x + 4)^4 + (x + 7)^2$, where $x$ is a real number. [b]p6.[/b] Ralph has a cylinder with height $15$ and volume $\frac{960}{\pi}$ . What is the longest distance (staying on the surface) between two points of the cylinder? [u]Round 3 [/u] [b]p7.[/b] If there are exactly $3$ pairs $(x, y)$ satisfying $x^2 + y^2 = 8$ and $x + y = (x - y)^2 + a$, what is the value of $a$? [b]p8.[/b] If $n$ is an integer between $4$ and $1000$, what is the largest possible power of $2$ that $n^4 - 13n^2 + 36$ could be divisible by? (Your answer should be this power of $2$, not just the exponent.) [b]p9.[/b] Find the sum of all positive integers $n \ge 2$ for which the following statement is true: “for any arrangement of $n$ points in three-dimensional space where the points are not all collinear, you can always find one of the points such that the $n - 1$ rays from this point through the other points are all distinct.” [u]Round 4 [/u] [b]p10.[/b] Donald writes the number $12121213131415$ on a piece of paper. How many ways can he rearrange these fourteen digits to make another number where the digit in every place value is different from what was there before? [b]p11.[/b] A question on Joe’s math test asked him to compute $\frac{a}{b} +\frac34$ , where $a$ and $b$ were both integers. Because he didn’t know how to add fractions, he submitted $\frac{a+3}{b+4}$ as his answer. But it turns out that he was right for these particular values of $a$ and $b$! What is the largest possible value that a could have been? [b]p12.[/b] Christopher has a globe with radius $r$ inches. He puts his finger on a point on the equator. He moves his finger $5\pi$ inches North, then $\pi$ inches East, then $5\pi$ inches South, then $2\pi$ inches West. If he ended where he started, what is the largest possible value of $r$? PS. You should use hide for answers. Rounds 5-7 have be posted [url=https://artofproblemsolving.com/community/c4h2789002p24519497]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1941 Moscow Mathematical Olympiad, 073

Given a quadrilateral, the midpoints $A, B, C, D$ of its consecutive sides, and the midpoints of its diagonals, $P$ and $Q$. Prove that $\vartriangle BCP = \vartriangle ADQ$.

2017 Junior Balkan Team Selection Tests - Romania, 4

Let $ABC$ be a right triangle, with the right angle at $A$. The altitude from $A$ meets $BC$ at $H$ and $M$ is the midpoint of the hypotenuse $[BC]$. On the legs, in the exterior of the triangle, equilateral triangles $BAP$ and $ACQ$ are constructed. If $N$ is the intersection point of the lines $AM$ and $PQ$, prove that the angles $\angle NHP$ and $\angle AHQ$ are equal. Miguel Ochoa Sanchez and Leonard Giugiuc

2008 Oral Moscow Geometry Olympiad, 5

There are two shawls, one in the shape of a square, the other in the shape of a regular triangle, and their perimeters are the same. Is there a polyhedron that can be completely pasted over with these two shawls without overlap (shawls can be bent, but not cut)? (S. Markelov).

LMT Guts Rounds, 2012

[u]Round 9[/u] [b]p25.[/b] What is the largest integer that cannot be expressed as the sum of nonnegative multiples of $7$, $11$, and $13$? [b]p26.[/b] Evaluate $12{3 \choose3}+ 11{4\choose 3}+ 10{5\choose 3}+ ...+ 2{13\choose 3}+{14 \choose 3}$. [b]p27.[/b] Worker Bob drives to work at $30$ mph half the time and $60$ mph half the time. He returns home along the same route at $30$ mph half the distance and $60$ mph half the distance. What is his average speed along the entire trip, in mph? [u]Round 10[/u] [b]p28.[/b] In quadrilateral $ABCD$, diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P$ with $BP = 4$, $P D = 6$, $AP = 8$, $P C = 3$, and $AB = 6$. What is the length of $AD$? [b]p29.[/b] Find all positive integers $x$ such that$ x^2 + 17x + 17$ is a square number. [b]p30.[/b] Zach has ten weighted coins that turn up heads with probabilities $\frac{2}{11^2}$ ,$\frac{2}{10^2}$ ,$\frac{2}{9^2}$ $, . . $.,$\frac{2}{2^2}$ . If he flips all ten coins simultaneously, then what is the probability that he will get an even number of heads? [u]Round 11[/u] [b]p31.[/b] Given a sequence $a_1, a_2, . . .$ such that $a_1 = 3$ and $a_{n+1} = a^2_n - 2a_n + 2$ for $n \ge 1$, find the remainder when the product a1a2 · · · a2012 is divided by 100. [b]p32.[/b] Let $ABC$ be an equilateral triangle and let $O$ be its circumcircle. Let $D$ be a point on $\overline{BC}$, and extend $\overline{AD}$ to intersect $O$ at $P$. If $BP = 5$ and $CP = 4$, then what is the value of $DP$? [b]p33.[/b] Surya and Hao take turns playing a game on a calendar. They start with the date January $1$ and they can either increase the month to a later month or increase the day to a later day in that month but not both. The first person to adjust the date to December $31$ is the winner. If Hao goes first, then what is the first date that he must choose to ensure that he does not lose? [u]Round 12[/u] [b]p34.[/b] On May $5$, $1868$, exactly $144$ years before today, Memorial Day in the United States was officially proclaimed. The first Memorial Day took place that year on May $30$ at Waterloo, New York. On May $5$, $2012$, at $12:00$ PM, how many results did the search “memorial day” on Google return? The search phrase is in quotes, so Google will only return sites that have the words memorial and day next to each other in that order. Let $N = max-\{0, \rfloor 15.5 \times \frac{ Your\,\,\, Answer}{Actual \,\,\,Answer} \rfloor \}$. You will earn the number of points equal to $min\{N, max\{0, 30 - N\}\}$. [b]p35.[/b] Estimate the side length of a regular pentagon whose area is $2012$. You will earn the number of points equal to $max\{0, 15 - \lfloor 5 \times |Your \,\,\,Answer - Actual \,\,\,Answer| \rfloor \}$. [b]p36.[/b] Write down one integer between $1$ and $15$, inclusive. (If you do not, then you will receive $0$ points.) Let the number that you submit be $x$. Let $\overline{x}$ be the arithmetic mean of all of the valid numbers submitted by all of the teams. If $x > \overline{x}$, then you will receive $0$ points; otherwise, you will receive $x$ points. PS. You should use hide for answers.Rounds 1-4 are [url=https://artofproblemsolving.com/community/c3h3134177p28401527]here [/url] and 6-8 [url=https://artofproblemsolving.com/community/c3h3134466p28406321]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1995 Vietnam Team Selection Test, 1

Let be given a triangle $ ABC$ with $ BC \equal{} a$, $ CA \equal{} b$, $ AB \equal{} c$. Six distinct points $ A_1$, $ A_2$, $ B_1$, $ B_2$, $ C_1$, $ C_2$ not coinciding with $ A$, $ B$, $ C$ are chosen so that $ A_1$, $ A_2$ lie on line $ BC$; $ B_1$, $ B_2$ lie on $ CA$ and $ C_1$, $ C_2$ lie on $ AB$. Let $ \alpha$, $ \beta$, $ \gamma$ three real numbers satisfy $ \overrightarrow{A_1A_2} \equal{} \frac {\alpha}{a}\overrightarrow{BC}$, $ \overrightarrow{B_1B_2} \equal{} \frac {\beta}{b}\overrightarrow{CA}$, $ \overrightarrow{C_1C_2} \equal{} \frac {\gamma}{c}\overrightarrow{AB}$. Let $ d_A$, $ d_B$, $ d_C$ be respectively the radical axes of the circumcircles of the pairs of triangles $ AB_1C_1$ and $ AB_2C_2$; $ BC_1A_1$ and $ BC_2A_2$; $ CA_1B_1$ and $ CA_2B_2$. Prove that $ d_A$, $ d_B$ and $ d_C$ are concurrent if and only if $ \alpha a \plus{} \beta b \plus{} \gamma c \neq 0$.

1997 AMC 8, 15

Tags: geometry , ratio
Each side of the large square in the figure is trisected (divided into three equal parts). The corners of an inscribed square are at these trisection points, as shown. The ratio of the area of the inscribed square to the area of the large square is [asy] draw((0,0)--(3,0)--(3,3)--(0,3)--cycle); draw((1,0)--(1,0.2)); draw((2,0)--(2,0.2)); draw((3,1)--(2.8,1)); draw((3,2)--(2.8,2)); draw((1,3)--(1,2.8)); draw((2,3)--(2,2.8)); draw((0,1)--(0.2,1)); draw((0,2)--(0.2,2)); draw((2,0)--(3,2)--(1,3)--(0,1)--cycle); [/asy] $\textbf{(A)}\ \dfrac{\sqrt{3}}{3} \qquad \textbf{(B)}\ \dfrac{5}{9} \qquad \textbf{(C)}\ \dfrac{2}{3} \qquad \textbf{(D)}\ \dfrac{\sqrt{5}}{3} \qquad \textbf{(E)}\ \dfrac{7}{9}$

1959 AMC 12/AHSME, 41

Tags: geometry , circles
On the same side of a straight line three circles are drawn as follows: a circle with a radius of $4$ inches is tangent to the line, the other two circles are equal, and each is tangent to the line and to the other two circles. The radius of the equal circles is: $ \textbf{(A)}\ 24 \qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 16\qquad\textbf{(E)}\ 12 $

2018 May Olympiad, 3

Let $ABCDEFGHIJ$ be a regular $10$-sided polygon that has all its vertices in one circle with center $O$ and radius $5$. The diagonals $AD$ and $BE$ intersect at $P$ and the diagonals $AH$ and $BI$ intersect at $Q$. Calculate the measure of the segment $PQ$.

2007 Estonia Math Open Junior Contests, 2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

2024-IMOC, G4

Tags: geometry
Given triangle $ABC$ with $AB<AC$ and its circumcircle $\Omega$. Let $I$ be the incenter of $ABC$, and the feet from $I$ to $BC$ is $D$. The circle with center $A$ and radius $AI$ intersects $\Omega$ at $E$ and $F$. $P$ is a point on $EF$ such that $DP$ is parallel to $AI$. Prove that $AP$ and $MI$ intersects on $\Omega$ where $M$ is the midpoint of arc $BAC$. [hide = Remark] In the test, the incenter called $O$ and the circumcircle called $Luna$ $Cabrera$ You have to prove $AP \cap MO \in Luna$ $Cabrera$ [/hide] [i]Proposed by BlessingOfHeaven[/i]

2011 Ukraine Team Selection Test, 9

Inside the inscribed quadrilateral $ ABCD $, a point $ P $ is marked such that $ \angle PBC = \angle PDA $, $ \angle PCB = \angle PAD $. Prove that there exists a circle that touches the straight lines $ AB $ and $ CD $, as well as the circles circumscribed by the triangles $ ABP $ and $ CDP $.

2001 Spain Mathematical Olympiad, Problem 2

Let $P$ be a point on the interior of triangle $ABC$, such that the triangle $ABP$ satisfies $AP = BP$. On each of the other sides of $ABC$, build triangles $BQC$ and $CRA$ exteriorly, both similar to triangle $ABP$ satisfying: $$BQ = QC$$ and $$CR = RA.$$ Prove that the point $P,Q,C,$ and $R$ are collinear or are the vertices of a parallelogram.