This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 China Team Selection Test, 5

Tags: geometry
In the non-isosceles triangle $ABC$,$D$ is the midpoint of side $BC$,$E$ is the midpoint of side $CA$,$F$ is the midpoint of side $AB$.The line(different from line $BC$) that is tangent to the inscribed circle of triangle $ABC$ and passing through point $D$ intersect line $EF$ at $X$.Define $Y,Z$ similarly.Prove that $X,Y,Z$ are collinear.

2007 F = Ma, 11

A uniform disk, a thin hoop, and a uniform sphere, all with the same mass and same outer radius, are each free to rotate about a fixed axis through its center. Assume the hoop is connected to the rotation axis by light spokes. With the objects starting from rest, identical forces are simultaneously applied to the rims, as shown. Rank the objects according to their kinetic energies after a given time $t$, from least to greatest. [asy] size(225); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); filldraw(circle((0,0),1),gray(.7)); draw((0,-1)--(2,-1),EndArrow); label("$\vec{F}$",(1, -1),S); label("Disk",(-1,0),W); filldraw(circle((5,0),1),gray(.7)); filldraw(circle((5,0),0.75),white); draw((5,-1)--(7,-1),EndArrow); label("$\vec{F}$",(6, -1),S); label("Hoop",(6,0),E); filldraw(circle((10,0),1),gray(.5)); draw((10,-1)--(12,-1),EndArrow); label("$\vec{F}$",(11, -1),S); label("Sphere",(11,0),E); [/asy] $ \textbf{(A)} \ \text{disk, hoop, sphere}$ $\textbf{(B)}\ \text{sphere, disk, hoop}$ $\textbf{(C)}\ \text{hoop, sphere, disk}$ $\textbf{(D)}\ \text{disk, sphere, hoop}$ $\textbf{(E)}\ \text{hoop, disk, sphere} $

1976 Bundeswettbewerb Mathematik, 2

Two congruent squares $Q$ and $Q'$ are given in the plane. Show that they can be divided into parts $T_1, T_2, \ldots , T_n$ and $T'_1 , T'_2 , \ldots , T'_n$, respectively, such that $T'_i$ is the image of $T_i$ under a translation for $i=1,2, \ldots, n.$

2018 Junior Balkan MO, 4

Let $\triangle ABC$ and $A'$,$B'$,$C'$ the symmetrics of vertex over opposite sides.The intersection of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1$.$B_1$ and $C_1$ are defined similarly.Prove that lines $AA_1$,$BB_1$ and $CC_1$ are concurent.

2014 Math Prize For Girls Problems, 17

Let $ABC$ be a triangle. Points $D$, $E$, and $F$ are respectively on the sides $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$ of $\triangle ABC$. Suppose that \[ \frac{AE}{AC} = \frac{CD}{CB} = \frac{BF}{BA} = x \] for some $x$ with $\frac{1}{2} < x < 1$. Segments $\overline{AD}$, $\overline{BE}$, and $\overline{CF}$ cut the triangle into 7 nonoverlapping regions: 4 triangles and 3 quadrilaterals. The total area of the 4 triangles equals the total area of the 3 quadrilaterals. Compute the value of $x$.

1970 Bulgaria National Olympiad, Problem 4

Tags: triangle , geometry
Let $\delta_0=\triangle A_0B_0C_0$ be a triangle. On each of the sides $B_0C_0$, $C_0A_0$, $A_0B_0$, there are constructed squares in the halfplane, not containing the respective vertex $A_0,B_0,C_0$ and $A_1,B_1,C_1$ are the centers of the constructed squares. If we use the triangle $\delta_1=\triangle A_1B_1C_1$ in the same way we may construct the triangle $\delta_2=\triangle A_2B_2C_2$; from $\delta_2=\triangle A_2B_2C_2$ we may construct $\delta_3=\triangle A_3B_3C_3$ and etc. Prove that: (a) segments $A_0A_1,B_0B_1,C_0C_1$ are respectively equal and perpendicular to $B_1C_1,C_1A_1,A_1B_1$; (b) vertices $A_1,B_1,C_1$ of the triangle $\delta_1$ lies respectively over the segments $A_0A_3,B_0B_3,C_0C_3$ (defined by the vertices of $\delta_0$ and $\delta_1$) and divide them in ratio $2:1$. [i]K. Dochev[/i]

LMT Guts Rounds, 2021 S

[u]Round 1[/u] [b]p1.[/b] How many ways are there to arrange the letters in the word $NEVERLAND$ such that the $2$ $N$’s are adjacent and the two $E$’s are adjacent? Assume that letters that appear the same are not distinct. [b]p2.[/b] In rectangle $ABCD$, $E$ and $F$ are on $AB$ and $CD$, respectively such that $DE = EF = FB$ and $\angle CDE = 45^o$. Find $AB + AD$ given that $AB$ and $AD$ are relatively prime positive integers. [b]p3.[/b] Maisy Airlines sees $n$ takeoffs per day. Find the minimum value of $n$ such that theremust exist two planes that take off within aminute of each other. [u]Round 2[/u] [b]p4.[/b] Nick is mixing two solutions. He has $100$ mL of a solution that is $30\%$ $X$ and $400$ mL of a solution that is $10\%$ $X$. If he combines the two, what percent $X$ is the final solution? [b]p5.[/b] Find the number of ordered pairs $(a,b)$, where $a$ and $b$ are positive integers, such that $$\frac{1}{a}+\frac{2}{b}=\frac{1}{12}.$$ [b]p6.[/b] $25$ balls are arranged in a $5$ by $5$ square. Four of the balls are randomly removed from the square. Given that the probability that the square can be rotated $180^o$ and still maintain the same configuration can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime, find $m+n$. [u]Round 3[/u] [b]p7.[/b] Maisy the ant is on corner $A$ of a $13\times 13\times 13$ box. She needs to get to the opposite corner called $B$. Maisy can only walk along the surface of the cube and takes the path that covers the least distance. Let $C$ and $D$ be the possible points where she turns on her path. Find $AC^2 + AD^2 +BC^2 +BD^2 - AB^2 -CD^2$. [b]p8.[/b] Maisyton has recently built $5$ intersections. Some intersections will get a park and some of those that get a park will also get a chess school. Find how many different ways this can happen. [b]p9.[/b] Let $f (x) = 2x -1$. Find the value of $x$ that minimizes $| f ( f ( f ( f ( f (x)))))-2020|$. [u]Round 4[/u] [b]p10.[/b] Triangle $ABC$ is isosceles, with $AB = BC > AC$. Let the angle bisector of $\angle A$ intersect side $\overline{BC}$ at point $D$, and let the altitude from $A$ intersect side $\overline{BC}$ at point $E$. If $\angle A = \angle C= x^o$, then the measure of $\angle DAE$ can be expressed as $(ax -b)^o$, for some constants $a$ and $b$. Find $ab$. [b]p11[/b]. Maisy randomly chooses $4$ integers $w$, $x$, $y$, and $z$, where $w, x, y, z \in \{1,2,3, ... ,2019,2020\}$. Given that the probability that $w^2 + x^2 + y^2 + z^2$ is not divisible by $4$ is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, find $m+n$. [b]p12.[/b] Evaluate $$-\log_4 \left(\log_2 \left(\sqrt{\sqrt{\sqrt{...\sqrt{16}}}} \right)\right),$$ where there are $100$ square root signs. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3166476p28814111]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166480p28814155]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Romania Team Selection Test, P2

A [i]diagonal line[/i] of a (not necessarily convex) polygon with at least four sides is any line through two non-adjacent vertices of that polygon. Determine all polygons with at least four sides satisfying the following condition: The reflexion of each vertex in each diagonal line lies inside or on the boundary of the polygon. [i]The Problem Selection Committee[/i]

MMPC Part II 1996 - 2019, 2002

[b]p1. [/b](a) Show that for every positive integer $m > 1$, there are positive integers $x$ and $y$ such that $x^2 - y^2 = m^3$. (b) Find all pairs of positive integers $(x, y)$ such that $x^6 = y^2 + 127$. [b]p2.[/b] (a) Let $P(x)$ be a polynomial with integer coefficients. Suppose that $P(0)$ is an odd integer and that $P(1)$ is also an odd integer. Show that if $c$ is an integer then $P(c)$ is not equal to $0$. (b) Let P(x) be a polynomial with integer coefficients. Suppose that $P(1,000) = 1,000$ and $P(2,000) = 2,000.$ Explain why $P(3,000)$ cannot be equal to $1,000$. [b]p3.[/b] Triangle $\vartriangle ABC$ is created from points $A(0, 0)$, $B(1, 0)$ and $C(1/2, 2)$. Let $q, r$, and $s$ be numbers such that $0 < q < 1/2 < s < 1$, and $q < r < s$. Let D be the point on $AC$ which has $x$-coordinate $q$, $E$ be the point on AB which has $x$-coordinate $r$, and $F$ be the point on $BC$ that has $x$-coordinate $s$. (a) Find the area of triangle $\vartriangle DEF$ in terms of $q, r$, and $s$. (b) If $r = 1/2$, prove that at least one of the triangles $\vartriangle ADE$, $\vartriangle CDF$, or $\vartriangle BEF$ has an area of at least $1/4$. [b]p4.[/b] In the Gregorian calendar: (i) years not divisible by $4$ are common years, (ii) years divisible by $4$ but not by $100$ are leap years, (iii) years divisible by $100$ but not by $400$ are common years, (iv) years divisible by $400$ are leap years, (v) a leap year contains $366$ days, a common year $365$ days. From the information above: (a) Find the number of common years and leap years in $400$ consecutive Gregorian years. Show that $400$ consecutive Gregorian years consists of an integral number of weeks. (b) Prove that the probability that Christmas falls on a Wednesday is not equal to $1/7$. [b]p5.[/b] Each of the first $13$ letters of the alphabet is written on the back of a card and the $13$ cards are placed in a row in the order $$A,B,C,D,E, F, G,H, I, J,K, L,M$$ The cards are then turned over so that the letters are face down. The cards are rearranged and again placed in a row, but of course they may be in a different order. They are rearranged and placed in a row a second time and both rearrangements were performed exactly the same way. When the cards are turned over the letters are in the order $$B,M, A,H, G,C, F,E,D, L, I,K, J$$ What was the order of the letters after the cards were rearranged the first time? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Iran MO (2nd round), 1

Tags: geometry
Let $E$ and $F$ on $AC$ and $AB$ respectively in $\triangle ABC$ such that $DE || BC$ then draw line $l$ through $A$ such that $l || BC$ let $D'$ and $E'$ reflection of $D$ and $E$ to $l$ respectively prove that $D'B, E'C$ and $l$ are congruence.

1950 Moscow Mathematical Olympiad, 181

a) In a convex $13$-gon all diagonals are drawn, dividing it into smaller polygons. What is the greatest number of sides can these polygons have? b) In a convex $1950$-gon all diagonals are drawn, dividing it into smaller polygons. What is the greatest number of sides can these polygons have?

2013 Online Math Open Problems, 21

Dirock has a very neat rectangular backyard that can be represented as a $32\times 32$ grid of unit squares. The rows and columns are each numbered $1,2,\ldots, 32$. Dirock is very fond of rocks, and places a rock in every grid square whose row and column number are both divisible by $3$. Dirock would like to build a rectangular fence with vertices at the centers of grid squares and sides parallel to the sides of the yard such that [list] [*] The fence does not pass through any grid squares containing rocks; [*] The interior of the fence contains exactly 5 rocks. [/list] In how many ways can this be done? [i]Ray Li[/i]

2007 All-Russian Olympiad, 7

Given a tetrahedron $ T$. Valentin wants to find two its edges $ a,b$ with no common vertices so that $ T$ is covered by balls with diameters $ a,b$. Can he always find such a pair? [i]A. Zaslavsky[/i]

Mathley 2014-15, 9

There are $2014$ students from high schools nationwide communications sit around a round table in arbitrary manner. Then the organizers want to rearrange students from the same school sit next to each other by performing the following swapping: permutation view of two adjacent groups of students (see illustration). Find the smallest $k$ number so that a result can be obtained results as desired by the organizers with no more than $k$ swapping permits. Permission to change places like after $...\underbrace{ABCD}_\text{1}\underbrace{EFG}_\text{2}... \to ...\underbrace{EFG}_\text{2}\underbrace{ABCD}_\text{1}...$ Vu The Khoi, Institute of Mathematics, Vietnam Academy of Science and Technology, Cau Giay, Hanoi.

2011 Princeton University Math Competition, A7

Tags: geometry
Let $ABC$ be a triangle with $AB = 2, BC = 5, AC = 4$. Let $M$ be the projection of $C$ onto the external angle bisector at vertex $B$. Similarly, let $N$ be the projection of $B$ onto the external angle bisector at vertex $C$. If the ratio of the area of quadrilateral $BCNM$ to the area of triangle $ABC$ is $a/b$, where $a$ and $b$ are positive integers and $\gcd(a, b) = 1$, find $a + b$.

2022 Chile TST IMO, 2

Tags: geometry
Let $ABC$ be an acute-angled triangle with $|AB| \neq |AC|$. Let $D$ be the foot of the altitude from $A$ to $BC$, and let $E$ be the intersection of the bisector of angle $\angle BAC$ with side $BC$. Let $P$ and $Q$ be the intersection points of the circumcircle of triangle $ADE$ with $AC$ and $AB$, respectively. Prove that the lines $AD$, $BP$, and $CQ$ pass through a common point.

2012 CHMMC Spring, Mixer

[u]Part 1[/u] You might think this round is broken after solving some of these problems, but everything is intentional. [b]1.1.[/b] The number $n$ can be represented uniquely as the sum of $6$ distinct positive integers. Find $n$. [b]1.2.[/b] Let $ABC$ be a triangle with $AB = BC$. The altitude from $A$ intersects line $BC$ at $D$. Suppose $BD = 5$ and $AC^2 = 1188$. Find $AB$. [b]1.3.[/b] A lemonade stand analyzes its earning and operations. For the previous month it had a \$45 dollar budget to divide between production and advertising. If it spent $k$ dollars on production, it could make $2k - 12$ glasses of lemonade. If it spent $k$ dollars on advertising, it could sell each glass at an average price of $15 + 5k$ cents. The amount it made in sales for the previous month was $\$40.50$. Assuming the stand spent its entire budget on production and advertising, what was the absolute di erence between the amount spent on production and the amount spent on advertising? [b]1.4.[/b] Let $A$ be the number of di erent ways to tile a $1 \times n$ rectangle with tiles of size $1 \times 1$, $1 \times 3$, and $1 \times 6$. Let B be the number of different ways to tile a $1 \times n$ rectangle with tiles of size $1 \times 2$ and $1 \times 5$, where there are 2 different colors available for the $1 \times 2$ tiles. Given that $A = B$, find $n$. (Two tilings that are rotations or reflections of each other are considered distinct.) [b]1.5.[/b] An integer $n \ge 0$ is such that $n$ when represented in base $2$ is written the same way as $2n$ is in base $5$. Find $n$. [b]1.6.[/b] Let $x$ be a positive integer such that $3$, $ \log_6(12x)$, $\log_6(18x)$ form an arithmetic progression in some order. Find $x$. [u]Part 2[/u] Oops, it looks like there were some [i]intentional [/i] printing errors and some of the numbers from these problems got removed. Any $\blacksquare$ that you see was originally some positive integer, but now its value is no longer readable. Still, if things behave like they did for Part 1, maybe you can piece the answers together. [b]2.1.[/b] The number $n$ can be represented uniquely as the sum of $\blacksquare$ distinct positive integers. Find $n$. [b]2.2.[/b] Let $ABC$ be a triangle with $AB = BC$. The altitude from $A$ intersects line $BC$ at $D$. Suppose $BD = \blacksquare$ and $AC^2 = 1536$. Find $AB$. [b]2.3.[/b] A lemonade stand analyzes its earning and operations. For the previous month it had a $\$50$ dollar budget to divide between production and advertising. If it spent k dollars on production, it could make $2k - 2$ glasses of lemonade. If it spent $k$ dollars on advertising, it could sell each glass at an average price of $25 + 5k$ cents. The amount it made in sales for the previous month was $\$\blacksquare$. Assuming the stand spent its entire budget on production and advertising, what was the absolute di erence between the amount spent on production and the amount spent on advertising? [b]2.4.[/b] Let $A$ be the number of different ways to tile a $1 \times n$ rectangle with tiles of size $1 \times \blacksquare$, $1 \times \blacksquare$, and $1 \times \blacksquare$. Let $B$ be the number of different ways to tile a $1\times n$ rectangle with tiles of size $1 \times \blacksquare$ and $1 \times \blacksquare$, where there are $\blacksquare$ different colors available for the $1 \times \blacksquare$ tiles. Given that $A = B$, find $n$. (Two tilings that are rotations or reflections of each other are considered distinct.) [b]2.5.[/b] An integer $n \ge \blacksquare$ is such that $n$ when represented in base $9$ is written the same way as $2n$ is in base $\blacksquare$. Find $n$. [b]2.6.[/b] Let $x$ be a positive integer such that $1$, $\log_{96}(6x)$, $\log_{96}(\blacksquare x)$ form an arithmetic progression in some order. Find $x$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Estonia Open Senior - geometry, 1993.5

Within an equilateral triangle $ABC$, take any point $P$. Let $L, M, N$ be the projections of $P$ on sides $AB, BC, CA$ respectively. Prove that $\frac{AP}{NL}=\frac{BP}{LM}=\frac{CP}{MN}$.

2005 Peru MO (ONEM), 3

Let $A,B,C,D$, be four different points on a line $\ell$, so that $AB=BC=CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points of the plane be such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the angle $\angle MBN$.

2006 AMC 10, 24

Centers of adjacent faces of a unit cube are joined to form a regular octahedron. What is the volume of this octahedron? $ \textbf{(A) } \frac 18 \qquad \textbf{(B) } \frac 16 \qquad \textbf{(C) } \frac 14 \qquad \textbf{(D) } \frac 13 \qquad \textbf{(E) } \frac 12$

2018 CHMMC (Fall), 2

Tags: geometry
A cat is tied to one corner of the base of a tower. The base forms an equilateral triangle of side length $4$ m, and the cat is tied with a leash of length $8$ m. Let $A$ be the area of the region accessible to the cat. If we write $A = \frac{m}{n} k - \sqrt{\ell}$, where $m,n, k, \ell$ are positive integers such that $m$ and $n$ are relatively prime, and $\ell$ is squarefree, what is the value of $m + n + k + \ell$ ?

2006 AMC 12/AHSME, 16

Regular hexagon $ ABCDEF$ has vertices $ A$ and $ C$ at $ (0,0)$ and $ (7,1)$, respectively. What is its area? $ \textbf{(A) } 20\sqrt {3} \qquad \textbf{(B) } 22\sqrt {3} \qquad \textbf{(C) } 25\sqrt {3} \qquad \textbf{(D) } 27\sqrt {3} \qquad \textbf{(E) } 50$

Novosibirsk Oral Geo Oly VIII, 2022.3

Fold the next seven corners into a rectangle. [img]https://cdn.artofproblemsolving.com/attachments/b/b/2b8b9d6d4b72024996a66d41f865afb91bb9b7.png[/img]

Ukrainian TYM Qualifying - geometry, 2014.23

The inscribed circle $\omega$ of triangle $ABC$ with center $I$ touches the sides $AB, BC, CA$ at points $C_1, A_1, B_1$. The circle circumsrcibed around $\vartriangle AB_1C_1$ intersects the circumscribed circle of $ABC$ for second time at the point $K$. Let $M$ be the midpoint $BC$, $L$ be the midpoint of $B_1C_1$. The circle circumsrcibed around $\vartriangle KA_1M$ cuts intersects $\omega$ for second time at the point $T$. Prove that the circumscribed circles of triangles $KLT$ and $LIM$ are tangent.

2023 Cono Sur Olympiad, 5

Tags: geometry
Let $ABC$ be an acute triangle and $D, E, F$ are the midpoints of $BC, CA, AB$, respectively. The circle with diameter $AD$ intersects the lines $AB$ and $AC$ at points $P$ and $Q$ , respectively. The lines through $P$ and $Q$ parallel to $BC$ intersect $DE$ at point $R$ and $DF$ at point $S$, respectively. The circumcircle of $DPR$ intersects $AB$ at $X$, the circumcircle of $DQS$ intersects $AC$ in $Y$, and these two circles intersect again point $Z$. Prove that $Z$ is the midpoint of $XY$.