This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

LMT Team Rounds 2021+, 15

Tags: geometry
In triangle $ABC$ with $AB = 26$, $BC = 28$, and $C A = 30$, let $M$ be the midpoint of $AB$ and let $N$ be the midpoint of $C A$. The circumcircle of triangle $BCM$ intersects $AC$ at $X\ne C$, and the circumcircle of triangle $BCN $intersects $AB$ at $Y\ne B$. Lines $MX$ and $NY$ intersect $BC$ at $P$ and $Q$, respectively. The area of quadrilateral $PQY X$ can be expressed as $\frac{p}{q}$ for positive integers $p$ and $q$ such that gcd$(p,q) = 1$. Find $q$.

1987 Swedish Mathematical Competition, 2

A circle of radius $R$ is divided into two parts of equal area by an arc of another circle. Prove that the length of this arc is greater than $2R$.

2016 Sharygin Geometry Olympiad, 8

Tags: geometry
The diagonals of a cyclic quadrilateral meet at point $M$. A circle $\omega$ touches segments $MA$ and $MD$ at points $P,Q$ respectively and touches the circumcircle of $ABCD$ at point $X$. Prove that $X$ lies on the radical axis of circles $ACQ$ and $BDP$. [i](Proposed by Ivan Frolov)[/i]

2021 Junior Macedonian Mathematical Olympiad, Problem 2

Tags: geometry
Let $ABCD$ be a tangential quadrilateral with inscribed circle $k(O,r)$ which is tangent to the sides $BC$ and $AD$ at $K$ and $L$, respectively. Show that the circle with diameter $OC$ passes through the intersection point of $KL$ and $OD$. [i]Proposed by Ilija Jovchevski[/i]

1967 IMO Longlists, 39

Show that the triangle whose angles satisfy the equality \[ \frac{sin^2(A) + sin^2(B) + sin^2(C)}{cos^2(A) + cos^2(B) + cos^2(C)} = 2 \] is a rectangular triangle.

1989 Tournament Of Towns, (204) 2

In the triangle $ABC$ the median $AM$ is drawn. Is it possible that the radius of the circle inscribed in $\vartriangle ABM$ could be twice as large as the radius of the circle inscribed in $\vartriangle ACM$ ? ( D . Fomin , Leningrad)

1999 IMO, 5

Two circles $\Omega_{1}$ and $\Omega_{2}$ touch internally the circle $\Omega$ in M and N and the center of $\Omega_{2}$ is on $\Omega_{1}$. The common chord of the circles $\Omega_{1}$ and $\Omega_{2}$ intersects $\Omega$ in $A$ and $B$. $MA$ and $MB$ intersects $\Omega_{1}$ in $C$ and $D$. Prove that $\Omega_{2}$ is tangent to $CD$.

2009 Harvard-MIT Mathematics Tournament, 10

Let $f(x)=2x^3-2x$. For what positive values of $a$ do there exist distinct $b,c,d$ such that $(a,f(a)),(b,f(b)),(c,f(c)),(d,f(d))$ is a rectangle?

2021 Sharygin Geometry Olympiad, 10-11.5

A secant meets one circle at points $A_1$, $B_1$։, this secant meets a second circle at points $A_2$, $B_2$. Another secant meets the first circle at points $C_1$, $D_1$ and meets the second circle at points $C_2$, $D_2$. Prove that point $A_1C_1 \cap B_2D_2$, $A_1C_1 \cap A_2C_2$, $A_2C_2 \cap B_1D_1$, $B_2D_2 \cap B_1D_1$ lie on a circle coaxial with two given circles.

2016 Purple Comet Problems, 6

Tags: geometry
The following diagram shows a square where each side has seven dots that divide the side into six equal segments. All the line segments that connect these dots that form a 45 degree angle with a side of the square are drawn as shown. The area of the shaded region is 75. Find the area of the original square. For diagram go to http://www.purplecomet.org/welcome/practice

2017 Czech-Polish-Slovak Junior Match, 4

Bolek draw a trapezoid $ABCD$ trapezoid ($AB // CD$) on the board, with its midsegment line $EF$ in it. Point intersection of his diagonal $AC, BD$ denote by $P,$ and his rectangular projection on line $AB$ denote by $Q$. Lolek, wanting to tease Bolek, blotted from the board everything except segments $EF$ and $PQ$. When Bolek saw it, wanted to complete the drawing and draw the original trapezoid, but did not know how to do it. Can you help Bolek?

1986 IMO Longlists, 54

Tags: geometry
Find the least integer $n$ with the following property: For any set $V$ of $8$ points in the plane, no three lying on a line, and for any set $E$ of n line segments with endpoints in $V$ , one can find a straight line intersecting at least $4$ segments in $E$ in interior points.

2015 Sharygin Geometry Olympiad, 8

A perpendicular bisector of side $BC$ of triangle $ABC$ meets lines $AB$ and $AC$ at points $A_B$ and $A_C$ respectively. Let $O_a$ be the circumcenter of triangle $AA_BA_C$. Points $O_b$ and $O_c$ are defined similarly. Prove that the circumcircle of triangle $O_aO_bO_c$ touches the circumcircle of the original triangle.

2019 Sharygin Geometry Olympiad, 24

Tags: geometry
Two unit cubes have a common center. Is it always possible to number the vertices of each cube from $1$ to $8$ so that the distance between each pair of identically numbered vertices would be at most $4/5$? What about at most $13/16$?

1984 Putnam, B6

Tags: limit , geometry
A sequence of convex polygons $(P_n),n\ge0,$ is defined inductively as follows. $P_0$ is an equilateral triangle with side length $1$. Once $P_n$ has been determined, its sides are trisected; the vertices of $P_{n+1}$ are the interior trisection points of the sides of $P_n$. Express $\lim_{n\to\infty}[P_n]$ in the form $\frac{\sqrt a}b$, where $a,b$ are integers.

2017 Yasinsky Geometry Olympiad, 5

$ABCD$ is a rectangle. The segment $MA$ is perpendicular to plane $ABC$ . $MB= 15$ , $MC=24$ , $MD=20$. Find the length of $MA$ .

2008 Hanoi Open Mathematics Competitions, 8

The sides of a rhombus have length $a$ and the area is $S$. What is the length of the shorter diagonal?

Swiss NMO - geometry, 2021.2

Tags: geometry
Let $\triangle ABC$ be an acute triangle with $AB =AC$ and let $D$ be a point on the side $BC$. The circle with centre $D$ passing through $C$ intersects $\odot(ABD)$ at points $P$ and $Q$, where $Q$ is the point closer to $B$. The line $BQ$ intersects $AD$ and $AC$ at points $X$ and $Y$ respectively. Prove that quadrilateral $PDXY$ is cyclic.

Novosibirsk Oral Geo Oly VIII, 2021.4

Angle bisectors $AD$ and $BE$ are drawn in triangle $ABC$. It turned out that $DE$ is the bisector of triangle $ADC$. Find the angle $BAC$.

2002 France Team Selection Test, 1

In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$. a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$. b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.

Kvant 2019, M2559

Two not necessarily equal non-intersecting wooden disks, one gray and one black, are glued to a plane. An in finite angle with one gray side and one black side can be moved along the plane so that the disks remain outside the angle, while the colored sides of the angle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that it is possible to draw a ray in the angle, starting from the vertex of the angle and such that no matter how the angle is positioned, the ray passes through some fixed point of the plane. (Egor Bakaev, Ilya Bogdanov, Pavel Kozhevnikov, Vladimir Rastorguev) (Junior version [url=https://artofproblemsolving.com/community/c6h2094701p15140671]here[/url]) [hide=note]There was a mistake in the text of the problem 3, we publish here the correct version. The solutions were estimated according to the text published originally.[/hide]

2009 Thailand Mathematical Olympiad, 3

Let $ABCD$ be a convex quadrilateral with the property that $MA \cdot MC + MA \cdot CD = MB \cdot MD$, where $M$ is the intersection of the diagonals $AC$ and $BD$. The angle bisector of $\angle ACD$ is drawn intersecting ray $\overrightarrow{BA}$ at $K$. Prove that $BC = DK$ if and only if $AB \parallel CD$.

Novosibirsk Oral Geo Oly IX, 2016.5

In the parallelogram $CMNP$ extend the bisectors of angles $MCN$ and $PCN$ and intersect with extensions of sides PN and $MN$ at points $A$ and $B$, respectively. Prove that the bisector of the original angle $C$ of the the parallelogram is perpendicular to $AB$. [img]https://cdn.artofproblemsolving.com/attachments/f/3/fde8ef133758e06b1faf8bdd815056173f9233.png[/img]

1995 Spain Mathematical Olympiad, 3

Tags: geometry
A line through the centroid G of the triangle ABC intersects the side AB at P and the side AC at Q Show that $\frac{PB}{PA} \cdot \frac{QC}{QA} \leq \frac{1}{4}$. Sorry for Triple-Posting. If possible, please merge the solutions to one document. I think there was an error because it may have automatically triple-posted.

2007 Vietnam Team Selection Test, 3

Given a triangle $ABC$. Find the minimum of \[\frac{\cos^{2}\frac{A}{2}\cos^{2}\frac{B}{2}}{\cos^{2}\frac{C}{2}}+\frac{\cos^{2}\frac{B}{2}\cos^{2}\frac{C}{2}}{\cos^{2}\frac{A}{2}}+\frac{\cos^{2}\frac{C}{2}\cos^{2}\frac{A}{2}}{\cos^{2}\frac{B}{2}}. \]