This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2013 AMC 12/AHSME, 23

$ ABCD$ is a square of side length $ \sqrt{3} + 1 $. Point $ P $ is on $ \overline{AC} $ such that $ AP = \sqrt{2} $. The square region bounded by $ ABCD $ is rotated $ 90^{\circ} $ counterclockwise with center $ P $, sweeping out a region whose area is $ \frac{1}{c} (a \pi + b) $, where $a $, $b$, and $ c $ are positive integers and $ \text{gcd}(a,b,c) = 1 $. What is $ a + b + c $? $\textbf{(A)} \ 15 \qquad \textbf{(B)} \ 17 \qquad \textbf{(C)} \ 19 \qquad \textbf{(D)} \ 21 \qquad \textbf{(E)} \ 23 $

2019 Kosovo National Mathematical Olympiad, 5

Tags: geometry
Let $ABCDE$ be a regular pentagon. Let point $F$ be intersection of segments $AC$ and $BD$. Let point $G$ be in segment $AD$ such that $2AD=3AG$. Let point $H$ be the midpoint of side $DE$. Show that the points $F,G,H$ lie on a line.

1976 Chisinau City MO, 122

The diagonals of some convex quadrilateral are mutually perpendicular and divide the quadrangle into $4$ triangles, the areas of which are expressed by prime numbers. Prove that a circle can be inscribed in this quadrilateral.

2014 Peru IMO TST, 10

Tags: geometry
Let $ABCDEF$ be a convex hexagon that does not have two parallel sides, such that $\angle AF B = \angle F DE, \angle DF E = \angle BDC$ and $\angle BFC = \angle ADF.$ Prove that the lines $ AB, FC$ and $DE$ are concurrent if and only if the lines $ AF, BE$ and $CD$ are concurrent.

VMEO III 2006, 11.2

Tags: geometry
Given a triangle $ABC$, incircle $(I)$ touches $BC,CA,AB$ at $D,E,F$ respectively. Let $M$ be a point inside $ABC$. Prove that $M$ lie on $(I)$ if and only if one number among $\sqrt{AE\cdot S_{BMC}},\sqrt{BF\cdot S_{CMA}},\sqrt{CD\cdot S_{AMB}}$ is sum of two remaining numbers ($S_{ABC}$ denotes the area of triangle $ABC$)

2009 Finnish National High School Mathematics Competition, 3

Tags: geometry
The circles $\mathcal{Y}_0$ and $\mathcal{Y}_1$ lies outside each other. Let $O_0$ be the center of $\mathcal{Y}_0$ and $O_1$ be the center of $\mathcal{Y}_1$. From $O_0$, draw the rays which are tangents to $\mathcal{Y}_1$ and similarty from $O_1$, draw the rays which are tangents to $\mathcal{Y}_0$. Let the intersection points of rays and circle $\mathcal{Y}_i$ be $A_i$ and $B_i$. Show that the line segments $A_0B_0$ and $A_1B_1$ have equal lengths.

2014 AMC 10, 14

The $y$-intercepts, $P$ and $Q$, of two perpendicular lines intersecting at the point $A(6,8)$ have a sum of zero. What is the area of $\triangle APQ$? $ \textbf{(A)}\ 45\qquad\textbf{(B)}\ 48\qquad\textbf{(C)}\ 54\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 72 $

Kyiv City MO Juniors 2003+ geometry, 2016.8.5

In the triangle $ABC$ the angle bisectors $AD$ and $BE$ are drawn. Prove that $\angle ACB = 60 {} ^ \circ$ if and only if $AE + BD = AB$. (Hilko Danilo)

2010 Indonesia TST, 4

Let $ ABC$ be a non-obtuse triangle with $ CH$ and $ CM$ are the altitude and median, respectively. The angle bisector of $ \angle BAC$ intersects $ CH$ and $ CM$ at $ P$ and $ Q$, respectively. Assume that \[ \angle ABP\equal{}\angle PBQ\equal{}\angle QBC,\] (a) prove that $ ABC$ is a right-angled triangle, and (b) calculate $ \dfrac{BP}{CH}$. [i]Soewono, Bandung[/i]

2011 ELMO Shortlist, 4

Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$. [i]Calvin Deng.[/i]

2000 Flanders Math Olympiad, 2

Tags: ratio , geometry , vector
Given two triangles and such that the lengths of the sides of the first triangle are the lengths of the medians of the second triangle. Determine the ratio of the areas of these triangles.

2018 Sharygin Geometry Olympiad, 8

Tags: geometry
Consider a fixed regular $n$-gon of unit side. When a second regular $n$-gon of unit size rolls around the first one, one of its vertices successively pinpoints the vertices of a closed broken line $\kappa$ as in the figure. [asy] int n=9; draw(polygon(n)); for (int i = 0; i<n;++i) { draw(reflect(dir(360*i/n + 90), dir(360*(i+1)/n + 90))*polygon(n), dashed+linewidth(0.4)); draw(reflect(dir(360*i/n + 90),dir(360*(i+1)/n + 90))*(0,1)--reflect(dir(360*(i-1)/n + 90),dir(360*i/n + 90))*(0,1), linewidth(1.2)); } [/asy] Let $A$ be the area of a regular $n$-gon of unit side, and let $B$ be the area of a regular $n$-gon of unit circumradius. Prove that the area enclosed by $\kappa$ equals $6A-2B$.

2014 BAMO, 1

The four bottom corners of a cube are colored red, green, blue, and purple. How many ways are there to color the top four corners of the cube so that every face has four different colored corners? Prove that your answer is correct.

2004 Romania Team Selection Test, 8

Let $\Gamma$ be a circle, and let $ABCD$ be a square lying inside the circle $\Gamma$. Let $\mathcal{C}_a$ be a circle tangent interiorly to $\Gamma$, and also tangent to the sides $AB$ and $AD$ of the square, and also lying inside the opposite angle of $\angle BAD$. Let $A'$ be the tangency point of the two circles. Define similarly the circles $\mathcal{C}_b$, $\mathcal{C}_c$, $\mathcal{C}_d$ and the points $B',C',D'$ respectively. Prove that the lines $AA'$, $BB'$, $CC'$ and $DD'$ are concurrent.

2019 CMIMC, 2

Suppose $X, Y, Z$ are collinear points in that order such that $XY = 1$ and $YZ = 3$. Let $W$ be a point such that $YW = 5$, and define $O_1$ and $O_2$ as the circumcenters of triangles $\triangle WXY$ and $\triangle WYZ$, respectively. What is the minimum possible length of segment $\overline{O_1O_2}$?

1999 USAMTS Problems, 4

There are $8436$ steel balls, each with radius $1$ centimeter, stacked in a tetrahedral pile, with one ball on top, $3$ balls in the second layer, $6$ in the third layer, $10$ in the fourth, and so on. Determine the height of the pile in centimeters.

2020 Jozsef Wildt International Math Competition, W57

In all triangles $ABC$ does it hold that: $$\sum\sin^2\frac A2\cos^2A\ge\frac{3\left(s^2-(2R+r)^2\right)}{8R^2}$$ [i]Proposed by Mihály Bencze and Marius Drăgan[/i]

2007 Tournament Of Towns, 5

From a regular octahedron with edge $1$, cut off a pyramid about each vertex. The base of each pyramid is a square with edge $\frac 13$. Can copies of the polyhedron so obtained, whose faces are either regular hexagons or squares, be used to tile space?

2013 Dutch IMO TST, 3

Fix a triangle $ABC$. Let $\Gamma_1$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_2$ the circle through C tangent to edge $AB$ in $A$. The second intersection of $\Gamma_1$ and $\Gamma_2$ is denoted by $D$. The line $AD$ has second intersection $E$ with the circumcircle of $\vartriangle ABC$. Show that $D$ is the midpoint of the segment $AE$.

1989 IMO Longlists, 4

The vertex $ A$ of the acute triangle $ ABC$ is equidistant from the circumcenter $ O$ and the orthocenter $ H.$ Determine all possible values for the measure of angle $ A.$

2010 CHMMC Fall, 4

Dagan has a wooden cube. He paints each of the six faces a different color. He then cuts up the cube to get eight identically-sized smaller cubes, each of which now has three painted faces and three unpainted faces. He then puts the smaller cubes back together into one larger cube such that no unpainted face is visible. Compute the number of different cubes that Dagan can make this way. Two cubes are considered the same if one can be rotated to obtain the other. You may express your answer either as an integer or as a product of prime numbers.

2007 Miklós Schweitzer, 9

Tags: geometry
Let $A$ and $B$ be two triangles on the plane such that the interior of both contains the origin and for each circle $C_r$ centered at the origin $|C_r \cap A|=|C_r\cap B|$ (where $|\cdot |$ is the arc-length measure). Prove that $A$ and $B$ are congruent. Does this statement remain true if the origin is on the border of $A$ or $B$? (translated by Miklós Maróti)

Estonia Open Junior - geometry, 2002.1.4

Consider a point $M$ inside triangle $ABC$ such that triangles $ABM, BCM$ and $CAM$ have equal areas. Prove that $M$ is the intersection point of the medians of triangle $ABC$.

1959 AMC 12/AHSME, 32

The length $l$ of a tangent, drawn from a point $A$ to a circle, is $\frac43$ of the radius $r$. The (shortest) distance from $A$ to the circle is: $ \textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.} $

2014 Singapore Senior Math Olympiad, 1

In the triangle $ABC$, the excircle opposite to the vertex $A$ with centre $I$ touches the side BC at D. (The circle also touches the sides of $AB$, $AC$ extended.) Let $M$ be the midpoint of $BC$ and $N$ the midpoint of $AD$. Prove that $I,M,N$ are collinear.