Found problems: 25757
Kyiv City MO Juniors 2003+ geometry, 2008.8.4
There are two triangles $ABC$ and $BKL$ on the plane so that the segment $AK$ is divided into three equal parts by the point of intersection of the medians $\vartriangle ABC$ and the point of intersection of the bisectors $ \vartriangle BKL $ ($AK $ - median $ \vartriangle ABC$, $KA$ - bisector $\vartriangle BKL $) and quadrilateral $KALC $ is trapezoid. Find the angles of the triangle $BKL$.
(Bogdan Rublev)
2025 AIME, 1
Six points $A, B, C, D, E,$ and $F$ lie in a straight line in that order. Suppose that $G$ is a point not on the line and that $AC=26, BD=22, CE=31, DF=33, AF=73, CG=40,$ and $DG=30.$ Find the area of $\triangle BGE.$
LMT Accuracy Rounds, 2022 S8
A ray originating at point $P$ intersects a circle with center $O$ at points $A$ and $B$, with $PB > PA$. Segment $\overline{OP}$ intersects the circle at point $C$. Given that $PA = 31$, $PC = 17$, and $\angle PBO = 60^o$, find the radius of the circle.
2013 Canada National Olympiad, 5
Let $O$ denote the circumcentre of an acute-angled triangle $ABC$. Let point $P$ on side $AB$ be such that $\angle BOP = \angle ABC$, and let point $Q$ on side $AC$ be such that $\angle COQ = \angle ACB$. Prove that the reflection of $BC$ in the line $PQ$ is tangent to the circumcircle of triangle $APQ$.
2004 Junior Balkan Team Selection Tests - Romania, 4
Given is a convex polygon with $n\geq 5$ sides. Prove that there exist at most $\displaystyle \frac{n(2n-5)}3$ triangles of area 1 with the vertices among the vertices of the polygon.
2014 Portugal MO, 2
Let $[ABCD]$ be a square, $M$ a point on the segment $[AD]$, and $N$ a point on the segment $[DC]$ such that $B\hat{M}A = N\hat{M}D = 60^{\circ}$. Calculate $M\hat{B}N$.
2006 AIME Problems, 8
Hexagon $ABCDEF$ is divided into four rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}$. Let $K$ be the area of rhombus $\mathcal{T}$. Given that $K$ is a positive integer, find the number of possible values for $K$.
[asy]
size(150);defaultpen(linewidth(0.7)+fontsize(10));
draw(rotate(45)*polygon(4));
pair F=(1+sqrt(2))*dir(180), C=(1+sqrt(2))*dir(0), A=F+sqrt(2)*dir(45), E=F+sqrt(2)*dir(-45), B=C+sqrt(2)*dir(180-45), D=C+sqrt(2)*dir(45-180);
draw(F--(-1,0)^^C--(1,0)^^A--B--C--D--E--F--cycle);
pair point=origin;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$\mathcal{P}$", intersectionpoint( A--(-1,0), F--(0,1) ));
label("$\mathcal{S}$", intersectionpoint( E--(-1,0), F--(0,-1) ));
label("$\mathcal{R}$", intersectionpoint( D--(1,0), C--(0,-1) ));
label("$\mathcal{Q}$", intersectionpoint( B--(1,0), C--(0,1) ));
label("$\mathcal{T}$", point);
dot(A^^B^^C^^D^^E^^F);[/asy]
2015 Sharygin Geometry Olympiad, P23
A tetrahedron $ABCD$ is given. The incircles of triangles $ ABC$ and $ABD$ with centers $O_1, O_2$, touch $AB$ at points $T_1, T_2$. The plane $\pi_{AB}$ passing through the midpoint of $T_1T_2$ is perpendicular to $O_1O_2$. The planes $\pi_{AC},\pi_{BC}, \pi_{AD}, \pi_{BD}, \pi_{CD}$ are defined similarly. Prove that these six planes have a common point.
1971 All Soviet Union Mathematical Olympiad, 152
a) Prove that the line dividing the triangle onto two polygons with equal perimeters and equal areas passes through the centre of the inscribed circle.
b) Prove the same statement for the arbitrary tangential polygon.
c) Prove that all the lines halving its perimeter and area simultaneously, intersect in one point.
Cono Sur Shortlist - geometry, 2005.G2
Find the ratio between the sum of the areas of the circles and the area of the fourth circle that are shown in the figure
Each circle passes through the center of the previous one and they are internally tangent.
[img]https://cdn.artofproblemsolving.com/attachments/d/2/29d2be270f7bcf9aee793b0b01c2ef10131e06.jpg[/img]
2018 Belarusian National Olympiad, 10.7
The square $A_1B_1C_1D_1$ is inscribed in the right triangle $ABC$ (with $C=90$) so that points $A_1$, $B_1$ lie on the legs $CB$ and $CA$ respectively ,and points $C_1$, $D_1$ lie on the hypotenuse $AB$. The circumcircle of triangles $B_1A_1C$ an $AC_1B_1$ intersect at $B_1$ and $Y$. Prove that the lines $A_1X$ and $B_1Y$ meet on the hypotenuse $AB$.
2016 APMC, 1
Given triangle $ABC$ with the inner - bisector $AD$. The line passes through $D$ and perpendicular to $BC$ intersects the outer - bisector of $\angle BAC$ at $I$. Circle $(I,ID)$ intersects $CA$, $AB$ at $E$, $F$, reps. The symmedian line of $\triangle AEF$ intersects the circle $(AEF)$ at $X$. Prove that the circles $(BXC)$ and $(AEF)$ are tangent.
[Hide=Diagram] [asy]import graph; size(7.04cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 7.02, xmax = 14.06, ymin = -1.54, ymax = 4.08; /* image dimensions */
/* draw figures */
draw((8.62,3.12)--(7.58,-0.38));
draw((7.58,-0.38)--(13.68,-0.38));
draw((13.68,-0.38)--(8.62,3.12));
draw((8.62,3.12)--(9.85183961338573,3.5535510951732316));
draw((9.85183961338573,3.5535510951732316)--(9.851839613385732,-0.38));
draw((9.851839613385732,-0.38)--(8.62,3.12));
draw(circle((10.012708209519483,1.129702986881574), 2.4291805937992947));
draw((8.62,3.12)--(9.470868507287285,-1.238276762688951), red);
draw(shift((9.85183961338573,3.553551095173232))*xscale(3.9335510951732324)*yscale(3.9335510951732324)*arc((0,0),1,237.85842690125605,309.7357733435313), linetype("4 4"));
draw(shift((10.63,3.8274278922585725))*xscale(5.196628663716066)*yscale(5.196628663716066)*arc((0,0),1,234.06132677886183,305.9386732211382), blue);
/* dots and labels */
dot((8.62,3.12),linewidth(3.pt) + dotstyle);
label("$A$", (8.48,3.24), NE * labelscalefactor);
dot((7.58,-0.38),linewidth(3.pt) + dotstyle);
label("$B$", (7.3,-0.58), NE * labelscalefactor);
dot((13.68,-0.38),linewidth(3.pt) + dotstyle);
label("$C$", (13.76,-0.26), NE * labelscalefactor);
dot((9.851839613385732,-0.38),linewidth(3.pt) + dotstyle);
label("$D$", (9.94,-0.26), NE * labelscalefactor);
dot((9.85183961338573,3.5535510951732316),linewidth(3.pt) + dotstyle);
label("$I$", (9.94,3.68), NE * labelscalefactor);
dot((7.759138898806625,0.22287129406075654),linewidth(3.pt) + dotstyle);
label("$F$", (7.46,0.16), NE * labelscalefactor);
dot((12.36635458796946,0.5286480122740898),linewidth(3.pt) + dotstyle);
label("$E$", (12.44,0.64), NE * labelscalefactor);
dot((9.470868507287285,-1.238276762688951),linewidth(3.pt) + dotstyle);
label("$X$", (9.56,-1.12), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */ [/asy] [/Hide]
1971 IMO Shortlist, 7
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
1984 IMO Shortlist, 4
Let $ d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $ n$ vertices (where $ n>3$). Let $ p$ be its perimeter. Prove that:
\[ n\minus{}3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n\plus{}1\over 2}\Bigr]\minus{}2,\]
where $ [x]$ denotes the greatest integer not exceeding $ x$.
2018 Sharygin Geometry Olympiad, 6
Let $ABCD$ be a circumscribed quadrilateral. Prove that the common point of the diagonals, the incenter of triangle $ABC$ and the centre of excircle of triangle $CDA$ touching the side $AC$ are collinear.
2019 Macedonia National Olympiad, 3
Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.
Estonia Open Senior - geometry, 2020.1.5
A circle $c$ with center $A$ passes through the vertices $B$ and $E$ of a regular pentagon $ABCDE$ . The line $BC$ intersects the circle $c$ for second time at point $F$. The point $G$ on the circle $c$ is chosen such that $| F B | = | FG |$ and $B \ne G$. Prove that the lines $AB, EF$ and $DG$ intersect at one point.
2020 Novosibirsk Oral Olympiad in Geometry, 5
Line $\ell$ is perpendicular to one of the medians of the triangle. The median perpendiculars to the sides of this triangle intersect the line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the other two.
MathLinks Contest 7th, 4.2
Find the number of finite sequences $ \{a_1,a_2,\ldots,a_{2n\plus{}1}\}$, formed with nonnegative integers, for which $ a_1\equal{}a_{2n\plus{}1}\equal{}0$ and $ |a_k \minus{}a_{k\plus{}1}|\equal{}1$, for all $ k\in\{1,2,\ldots,2n\}$.
2011 USAMO, 5
Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that
\[\angle Q_1BC=\angle ABP,\quad\angle Q_1CB=\angle DCP,\quad\angle Q_2AD=\angle BAP,\quad\angle Q_2DA=\angle CDP.\] Prove that $\overline{Q_1Q_2}\parallel\overline{AB}$ if and only if $\overline{Q_1Q_2}\parallel\overline{CD}$.
2008 Croatia Team Selection Test, 3
Point $ M$ is taken on side $ BC$ of a triangle $ ABC$ such that the centroid $ T_c$ of triangle $ ABM$ lies on the circumcircle of $ \triangle ACM$ and the centroid $ T_b$ of $ \triangle ACM$ lies on the circumcircle of $ \triangle ABM$. Prove that the medians of the triangles $ ABM$ and $ ACM$ from $ M$ are of the same length.
1997 Tournament Of Towns, (546) 7
Several strips and a circle of radius $1$ are drawn on the plane. The sum of the widths of the strips is $100$. Prove that one can translate each strip parallel to itself so that together they cover the circle.
(M Smurov )
2011 Bosnia and Herzegovina Junior BMO TST, 3
In isosceles triangle $ABC$ ($AC=BC$), angle bisector $\angle BAC$ and altitude $CD$ from point $C$ intersect at point $O$, such that $CO=3 \cdot OD$. In which ratio does altitude from point $A$ on side $BC$ divide altitude $CD$ of triangle $ABC$
2012 Cuba MO, 4
With $21$ pieces, some white and some black, a rectangle is formed of $3 \times 7$. Prove that there are always four pieces of the same color located at the vertices of a rectangle.
2007 AMC 10, 24
Circles centered at $ A$ and $ B$ each have radius $ 2$, as shown. Point $ O$ is the midpoint of $ \overline{AB}$, and $ OA \equal{} 2\sqrt {2}$. Segments $ OC$ and $ OD$ are tangent to the circles centered at $ A$ and $ B$, respectively, and $ EF$ is a common tangent. What is the area of the shaded region $ ECODF$?
[asy]unitsize(6mm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=3;
pair O=(0,0);
pair A=(-2*sqrt(2),0);
pair B=(2*sqrt(2),0);
pair G=shift(0,2)*A;
pair F=shift(0,2)*B;
pair C=shift(A)*scale(2)*dir(45);
pair D=shift(B)*scale(2)*dir(135);
pair X=A+2*dir(-60);
pair Y=B+2*dir(240);
path P=C--O--D--Arc(B,2,135,90)--G--Arc(A,2,90,45)--cycle;
fill(P,gray);
draw(Circle(A,2));
draw(Circle(B,2));
dot(A);
label("$A$",A,W);
dot(B);
label("$B$",B,E);
dot(C);
label("$C$",C,W);
dot(D);
label("$D$",D,E);
dot(G);
label("$E$",G,N);
dot(F);
label("$F$",F,N);
dot(O);
label("$O$",O,S);
draw(G--F);
draw(C--O--D);
draw(A--B);
draw(A--X);
draw(B--Y);
label("$2$",midpoint(A--X),SW);
label("$2$",midpoint(B--Y),SE);[/asy]$ \textbf{(A)}\ \frac {8\sqrt {2}}{3}\qquad \textbf{(B)}\ 8\sqrt {2} \minus{} 4 \minus{} \pi \qquad \textbf{(C)}\ 4\sqrt {2}$
$ \textbf{(D)}\ 4\sqrt {2} \plus{} \frac {\pi}{8}\qquad \textbf{(E)}\ 8\sqrt {2} \minus{} 2 \minus{} \frac {\pi}{2}$