Found problems: 25757
1992 AMC 8, 5
A circle of diameter $1$ is removed from a $2\times 3$ rectangle, as shown. Which whole number is closest to the area of the shaded region?
[asy]
fill((0,0)--(0,2)--(3,2)--(3,0)--cycle,gray);
draw((0,0)--(0,2)--(3,2)--(3,0)--cycle,linewidth(1));
fill(circle((1,5/4),1/2),white);
draw(circle((1,5/4),1/2),linewidth(1));
[/asy]
$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$
2021 Kyiv Mathematical Festival, 3
Let $\omega$ be the circumcircle of a triangle $ABC$ ($AB>AC$), $E$ be the midpoint of the arc $AC$ which does not contain point $B,$ аnd $F$ the midpoint of the arc $AB$ which does not contain point $C.$ Lines $AF$ and $BE$ meet at point $P,$ line $CF$ and $AE$ meet at point $R,$ and the tangent to $\omega$ at point $A$ meets line $BC$ at point $Q.$ Prove that points $P,Q,R$ are collinear. (M. Kurskiy)
2010 Iran MO (3rd Round), 4
in a triangle $ABC$, $I$ is the incenter. $BI$ and $CI$ cut the circumcircle of $ABC$ at $E$ and $F$ respectively. $M$ is the midpoint of $EF$. $C$ is a circle with diameter $EF$. $IM$ cuts $C$ at two points $L$ and $K$ and the arc $BC$ of circumcircle of $ABC$ (not containing $A$) at $D$. prove that $\frac{DL}{IL}=\frac{DK}{IK}$.(25 points)
2005 Estonia Team Selection Test, 1
On a plane, a line $\ell$ and two circles $c_1$ and $c_2$ of different radii are given such that $\ell$ touches both circles at point $P$. Point $M \ne P$ on $\ell$ is chosen so that the angle $Q_1MQ_2$ is as large as possible where $Q_1$ and $Q_2$ are the tangency points of the tangent lines drawn from $M$ to $c_i$ and $c_2$, respectively, differing from $\ell$ . Find $\angle PMQ_1 + \angle PMQ_2$·
2014 Online Math Open Problems, 19
In triangle $ABC$, $AB=3$, $AC=5$, and $BC=7$. Let $E$ be the reflection of $A$ over $\overline{BC}$, and let line $BE$ meet the circumcircle of $ABC$ again at $D$. Let $I$ be the incenter of $\triangle ABD$. Given that $\cos ^2 \angle AEI = \frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers, determine $m+n$.
[i]Proposed by Ray Li[/i]
2019 JBMO Shortlist, G5
Let $P$ be a point in the interior of a triangle $ABC$. The lines $AP, BP$ and $CP$
intersect again the circumcircles of the triangles $PBC, PCA$ and $PAB$ at $D, E$ and $F$
respectively. Prove that $P$ is the orthocenter of the triangle $DEF$ if and only if $P$ is the
incenter of the triangle $ABC$.
[i]Proposed by Romania[/i]
2022-IMOC, G2
The incenter of triangle $ABC$ is $ I$. the circumcircle of $ABC$ is tangent to $BC$, $CA$, $AB$ at $T, E, F$. $R$ is a point on $BC$ . Let the $C$-excenter of $\vartriangle CER$ be $L$. Prove that points $L,T,F$ are collinear if and only if $B,E,A,R$ are concyclic.
[i]proposed by kyou46[/i]
1992 IberoAmerican, 3
In a triangle $ABC$, points $A_{1}$ and $A_{2}$ are chosen in the prolongations beyond $A$ of segments $AB$ and $AC$, such that $AA_{1}=AA_{2}=BC$. Define analogously points $B_{1}$, $B_{2}$, $C_{1}$, $C_{2}$. If $[ABC]$ denotes the area of triangle $ABC$, show that $[A_{1}A_{2}B_{1}B_{2}C_{1}C_{2}] \geq 13 [ABC]$.
ABMC Speed Rounds, 2019
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Compute the sum $2019 + 201 + 20 + 2$.
[b]p2.[/b] The sequence $100, 102, 104,..., 996$ and $998$ is the sequence of all three-digit even numbers. How many three digit even numbers are there?
[b]p3.[/b] Find the units digit of $25\times 37\times 113\times 22$.
[b]p4.[/b] Samuel has a number in his head. He adds $4$ to the number and then divides the result by $2$. After doing this, he ends up with the same number he had originally. What is his original number?
[b]p5.[/b] According to Shay's Magazine, every third president is terrible (so the third, sixth, ninth president and so on were all terrible presidents). If there have been $44$ presidents, how many terrible presidents have there been in total?
[b]p6.[/b] In the game Tic-Tac-Toe, a player wins by getting three of his or her pieces in the same row, column, or diagonal of a $3\times 3$ square. How many configurations of $3$ pieces are winning? Rotations and reflections are considered distinct.
[b]p7.[/b] Eddie is a sad man. Eddie is cursed to break his arm $4$ times every $20$ years. How many times would he break his arm by the time he reaches age $100$?
[b]p8. [/b]The figure below is made from $5$ congruent squares. If the figure has perimeter $24$, what is its area?
[img]https://cdn.artofproblemsolving.com/attachments/1/9/6295b26b1b09cacf0c32bf9d3ba3ce76ddb658.png[/img]
[b]p9.[/b] Sancho Panza loves eating nachos. If he eats $3$ nachos during the first minute, $4$ nachos during the second, $5$ nachos during the third, how many nachos will he have eaten in total after $15$ minutes?
[b]p10.[/b] If the day after the day after the day before Wednesday was two days ago, then what day will it be tomorrow?
[b]p11.[/b] Neetin the Rabbit and Poonam the Meerkat are in a race. Poonam can run at $10$ miles per hour, while Neetin can only hop at $2$ miles per hour. If Neetin starts the race $2$ miles ahead of Poonam, how many minutes will it take for Poonam to catch up with him?
[b]p12.[/b] Dylan has a closet with t-shirts: $3$ gray, $4$ blue, $2$ orange, $7$ pink, and $2$ black. Dylan picks one shirt at random from his closet. What is the probability that Dylan picks a pink or a gray t-shirt?
[b]p13.[/b] Serena's brain is $200\%$ the size of Eric's brain, and Eric's brain is $200\%$ the size of Carlson's. The size of Carlson's brain is what percent the size of Serena's?
[b]p14.[/b] Find the sum of the coecients of $(2x + 1)^3$ when it is fully expanded.
[b]p15. [/b]Antonio loves to cook. However, his pans are weird. Specifically, the pans are rectangular prisms without a top. What is the surface area of the outside of one of Antonio's pans if their volume is $210$, and their length and width are $6$ and $5$, respectively?
[b]p16.[/b] A lattice point is a point on the coordinate plane with $2$ integer coordinates. For example, $(3, 4)$ is a lattice point since $3$ and $4$ are both integers, but $(1.5, 2)$ is not since $1.5$ is not an integer. How many lattice points are on the graph of the equation $x^2 + y^2 = 625$?
[b]p17.[/b] Jonny has a beaker containing $60$ liters of $50\%$ saltwater ($50\%$ salt and $50\%$ water). Jonny then spills the beaker and $45$ liters pour out. If Jonny adds $45$ liters of pure water back into the beaker, what percent of the new mixture is salt?
[b]p18.[/b] There are exactly 25 prime numbers in the set of positive integers between $1$ and $100$, inclusive. If two not necessarily distinct integers are randomly chosen from the set of positive integers from $1$ to $100$, inclusive, what is the probability that at least one of them is prime?
[b]p19.[/b] How many consecutive zeroes are at the end of $12!$ when it is expressed in base $6$?
[b]p20.[/b] Consider the following figure. How many triangles with vertices and edges from the following figure contain exactly $1$ black triangle?
[img]https://cdn.artofproblemsolving.com/attachments/f/2/a1c400ff7d06b583c1906adf8848370e480895.png[/img]
[b]p21.[/b] After Akshay got kicked o the school bus for rowdy behavior, he worked out a way to get home from school with his dad. School ends at $2:18$ pm, but since Akshay walks slowly he doesn't get to the front door until $2:30$. His dad doesn't like to waste time, so he leaves home everyday such that he reaches the high school at exactly $2:30$ pm, instantly picks up Akshay and turns around, then drives home. They usually get home at $3:30$ pm. However, one day Akshay left school early at exactly $2:00$ pm because he was expelled. Trying to delay telling his dad for as long as possible, Akshay starts jogging home. His dad left home at the regular time, saw Akshay on the way, picked him up and turned around instantly. They then drove home while Akshay's dad yelled at him for being a disgrace. They reached home at $3:10$ pm. How long had Akshay been walking before his dad picked him up?
[b]p22.[/b] In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Then $\angle BOC = \angle BCD$, $\angle COD =\angle BAD$, $AB = 4$, $DC = 6$, and $BD = 5$. What is the length of $BO$?
[b]p23.[/b] A standard six-sided die is rolled. The number that comes up first determines the number of additional times the die will be rolled (so if the first number is $3$, then the die will be rolled $3$ more times). Each time the die is rolled, its value is recorded. What is the expected value of the sum of all the rolls?
[b]p24.[/b] Dora has a peculiar calculator that can only perform $2$ operations: either adding $1$ to the current number or squaring the current number. Each minute, Dora randomly chooses an operation to apply to her number. She starts with $0$. What is the expected number of minutes it takes Dora's number to become greater than or equal to $10$?
[b]p25.[/b] Let $\vartriangle ABC$ be such that $AB = 2$, $BC = 1$, and $\angle ACB = 90^o$. Let points $D$ and $E$ be such that $\vartriangle ADE$ is equilateral, $D$ is on segment $\overline{BC}$, and $D$ and $E$ are not on the same side of $\overline{AC}$. Segment $\overline{BE}$ intersects the circumcircle of $\vartriangle ADE$ at a second point $F$. If $BE =\sqrt{6}$, find the length of $\overline{BF}$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Contests, 1
In triangle $ABC, \angle A= 45^o, BH$ is the altitude, the point $K$ lies on the $AC$ side, and $BC = CK$. Prove that the center of the circumscribed circle of triangle $ABK$ coincides with the center of an excircle of triangle $BCH$.
2001 AMC 12/AHSME, 8
Which of the cones listed below can be formed from a $ 252^\circ$ sector of a circle of radius $ 10$ by aligning the two straight sides?
[asy]import graph;unitsize(1.5cm);defaultpen(fontsize(8pt));draw(Arc((0,0),1,-72,180),linewidth(.8pt));draw(dir(288)--(0,0)--(-1,0),linewidth(.8pt));label("$10$",(-0.5,0),S);draw(Arc((0,0),0.1,-72,180));label("$252^{\circ}$",(0.05,0.05),NE);[/asy]
[asy]
import three;
picture mainframe;
defaultpen(fontsize(11pt));
picture conePic(picture pic, real r, real h, real sh)
{
size(pic, 3cm);
triple eye = (11, 0, 5);
currentprojection = perspective(eye);
real R = 1, y = 2;
triple center = (0, 0, 0);
triple radPt = (0, R, 0);
triple negRadPt = (0, -R, 0);
triple heightPt = (0, 0, y);
draw(pic, arc(center, radPt, negRadPt, heightPt, CW));
draw(pic, arc(center, radPt, negRadPt, heightPt, CCW), linetype("8 8"));
draw(pic, center--radPt, linetype("8 8"));
draw(pic, center--heightPt, linetype("8 8"));
draw(pic, negRadPt--heightPt--radPt);
label(pic, (string) r, center--radPt, dir(270));
if (h != 0)
{
label(pic, (string) h, heightPt--center, dir(0));
}
if (sh != 0)
{
label(pic, (string) sh, heightPt--radPt, dir(0));
}
return pic;
}
picture pic1;
pic1 = conePic(pic1, 6, 0, 10);
picture pic2;
pic2 = conePic(pic2, 6, 10, 0);
picture pic3;
pic3 = conePic(pic3, 7, 0, 10);
picture pic4;
pic4 = conePic(pic4, 7, 10, 0);
picture pic5;
pic5 = conePic(pic5, 8, 0, 10);
picture aux1; picture aux2; picture aux3;
add(aux1, pic1.fit(), (0,0), W);
label(aux1, "$\textbf{(A)}$", (0,0), 22W, linewidth(4));
label(aux1, "$\textbf{(B)}$", (0,0), 3E);
add(aux1, pic2.fit(), (0,0), 35E);
add(aux2, aux1.fit(), (0,0), W);
label(aux2, "$\textbf{(C)}$", (0,0), 3E);
add(aux2, pic3.fit(), (0,0), 35E);
add(aux3, aux2.fit(), (0,0), W);
label(aux3, "$\textbf{(D)}$", (0,0), 3E);
add(aux3, pic4.fit(), (0,0), 35E);
add(mainframe, aux3.fit(), (0,0), W);
label(mainframe, "$\textbf{(E)}$", (0,0), 3E);
add(mainframe, pic5.fit(), (0,0), 35E);
add(mainframe.fit(), (0,0), N);
[/asy]
2014 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be an acute triangle and let $O$ be its circumcentre. Now, let the diameter $PQ$ of circle $ABC$ intersects sides $AB$ and $AC$ in their interior at$ D$ and $E$, respectively. Now, let $F$ and $G$ be the midpoints of $CD$ and $BE$. Prove that $\angle FOG=\angle BAC$
1935 Moscow Mathematical Olympiad, 003
The base of a pyramid is an isosceles triangle with the vertex angle $\alpha$. The pyramid’s lateral edges are at angle $\phi$ to the base. Find the dihedral angle $\theta$ at the edge connecting the pyramid’s vertex to that of angle $\alpha$.
1985 Vietnam Team Selection Test, 3
Does there exist a triangle $ ABC$ satisfying the following two conditions:
(a) ${ \sin^2A + \sin^2B + \sin^2C = \cot A + \cot B + \cot C}$
(b) $ S\ge a^2 - (b - c)^2$ where $ S$ is the area of the triangle $ ABC$.
1963 AMC 12/AHSME, 32
The dimensions of a rectangle $R$ are $a$ and $b$, $a < b$. It is required to obtain a rectangle with dimensions $x$ and $y$, $x < a$, $y < a$, so that its perimeter is one-third that of $R$, and its area is one-third that of $R$. The number of such (different) rectangles is:
$\textbf{(A)}\ 0 \qquad
\textbf{(B)}\ 1\qquad
\textbf{(C)}\ 2 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ \text{infinitely many}$
2017 Sharygin Geometry Olympiad, P5
A segment $AB$ is fixed on the plane. Consider all acute-angled triangles with side $AB$. Find the locus of
а) the vertices of their greatest angles,
b) their incenters.
2018 Costa Rica - Final Round, G1
Let $O$ be the center of the circle circumscribed to $\vartriangle ABC$, and let $ P$ be any point on $BC$ ($P \ne B$ and $P \ne C$). Suppose that the circle circumscribed to $\vartriangle BPO$ intersects $AB$ at $R$ ($R \ne A$ and $R \ne B$) and that the circle circumscribed to $\vartriangle COP$ intersects $CA$ at point $Q$ ($Q \ne C$ and $Q \ne A$).
1) Show that $\vartriangle PQR \sim \vartriangle ABC$ and that$ O$ is orthocenter of $\vartriangle PQR$.
2) Show that the circles circumscribed to the triangles $\vartriangle BPO$, $\vartriangle COP$, and $\vartriangle PQR$ all have the same radius.
2023 Moldova Team Selection Test, 8
Let $ABC$ be an acute triangle with orthocenter $ H $ and $AB<AC.$ Let $\Omega_1$ be a circle with diameter $AC$ and $\Omega_2$ a circle with diameter $ AB.$ Line $BH$ intersects $\Omega_1$ in points $ D $ and $E$ such that $E$ is not on segment $BH.$ Line $ CH $ intersects $\Omega_2$ in points $ F $ and $G$ such that $G$ is not on segment $CH.$ Prove that the lines $EG, DF$ and $BC$ are concurrent.
1967 German National Olympiad, 1
In a plane, a square $ABCD$ and a point $P$ located inside it are given. Let a point $ Q$ pass through all sides of the square. Describe the set of all those points $R$ in for which the triangle $PQR$ is equilateral.
2013 IMAC Arhimede, 3
Let $ABC$ be a triangle with $\angle ABC=120^o$ and triangle bisectors $(AA_1),(BB_1),(CC_1)$, respectively. $B_1F \perp A_1C_1$, where $F\in (A_1C_1)$. Let $R,I$ and $S$ be the centers of the circles which are inscribed in triangles $C_1B_1F,C_1B_1A_1, A_1B_1F$, and $B_1S\cap A_1C_1=\{Q\}$. Show that $R,I,S,Q$ are on the same circle.
1970 Swedish Mathematical Competition, 2
$6$ open disks in the plane are such that the center of no disk lies inside another. Show that no point lies inside all $6$ disks.
2009 China Western Mathematical Olympiad, 3
Let $H$ be the orthocenter of acute triangle $ABC$ and $D$ the midpoint of $BC$. A line through $H$ intersects $AB,AC$ at $F,E$ respectively, such that $AE=AF$. The ray $DH$ intersects the circumcircle of $\triangle ABC$ at $P$. Prove that $P,A,E,F$ are concyclic.
2015 India Regional MathematicaI Olympiad, 5
Let $ABC$ be a right-angled triangle with $\angle B = 90^\circ$ and let $BD$ be the altitude from $B$ on to $AC$. Draw $DE \perp AB$ and $DF \perp BC$. Let $P, Q, R$ and $S$ be respectively the incentres of triangle $DF C, DBF, DEB$ and $DAE$. Suppose $S, R, Q$ are collinear. Prove that $P, Q, R, D$ lie on a circle.
2022 Sharygin Geometry Olympiad, 8.4
Let $ABCD$ be a cyclic quadrilateral, $O$ be its circumcenter, $P$ be a common points of its diagonals, and $M , N$ be the midpoints of $AB$ and $CD$ respectively. A circle $OPM$ meets for the second time segments $AP$ and $BP$ at points $A_1$ and $B_1$ respectively and a circle $OPN$ meets for the second time segments $CP$ and $DP$ at points $C_1$ and $D_1$ respectively. Prove that the areas of quadrilaterals $AA_1B_1B$ and $CC_1D_1D$ are equal.
1985 Putnam, A2
Let $T$ be an acute triangle. Inscribe a rectangle $R$ in $T$ with one side along a side of $T.$ Then inscribe a rectangle $S$ in the triangle formed by the side of $R$ opposite the side on the boundary of $T,$ and the other two sides of $T,$ with one side along the side of $R.$ For any polygon $X,$ let $A(X)$ denote the area of $X.$ Find the maximum value, or show that no maximum exists, of $\tfrac{A(R)+A(S)}{A(T)},$ where $T$ ranges over all triangles and $R,S$ over all rectangles as above.