Found problems: 25757
2010 BAMO, 4
Acute triangle $ABC$ has $\angle BAC < 45^\circ$. Point $D$ lies in the interior of triangle $ABC$ so that $BD = CD$ and $\angle BDC = 4 \angle BAC$. Point $E$ is the reflection of $C$ across line $AB$, and point $F$ is the reflection of $B$ across line $AC$. Prove that lines $AD$ and $EF$ are perpendicular.
1970 IMO Longlists, 22
In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$
2004 JBMO Shortlist, 2
Let $E, F$ be two distinct points inside a parallelogram $ABCD$ . Determine the maximum possible number of triangles having the same area with three vertices from points $A, B, C, D, E, F$.
2014 Taiwan TST Round 2, 2
Let $ABCDEF$ be a convex hexagon with $AB=DE$, $BC=EF$, $CD=FA$, and $\angle A-\angle D = \angle C -\angle F = \angle E -\angle B$. Prove that the diagonals $AD$, $BE$, and $CF$ are concurrent.
2004 Austria Beginners' Competition, 4
Of a rhombus $ABCD$ we know the circumradius $R$ of $\Delta ABC$ and $r$ of $\Delta BCD$. Construct the rhombus.
2014 India IMO Training Camp, 3
Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.
1977 AMC 12/AHSME, 5
The set of all points $P$ such that the sum of the (undirected) distances from $P$ to two fixed points $A$ and $B$ equals the distance between $A$ and $B$ is
$\textbf{(A) }\text{the line segment from }A\text{ to }B\qquad$
$\textbf{(B) }\text{the line passing through }A\text{ and }B\qquad$
$\textbf{(C) }\text{the perpendicular bisector of the line segment from }A\text{ to }B\qquad$
$\textbf{(D) }\text{an elllipse having positive area}\qquad$
$\textbf{(E) }\text{a parabola}$
1957 Moscow Mathematical Olympiad, 362
(a) A circle is inscribed in a triangle. The tangent points are the vertices of a second triangle in which another circle is inscribed. Its tangency points are the vertices of a third triangle. The angles of this triangle are identical to those of the first triangle. Find these angles.
(b) A circle is inscribed in a scalene triangle. The tangent points are vertices of another triangle, in which a circle is inscribed whose tangent points are vertices of a third triangle, in which a third circle is inscribed, etc. Prove that the resulting sequence does not contain a pair of similar triangles.
Brazil L2 Finals (OBM) - geometry, 2016.4
Consider a scalene triangle $ ABC $ with $ AB <AC <BC. $ The $ AB $ side mediator cuts the $ B $ side at the $ K $ point and the $ AC $ prolongation at the $ U. $ point. $ AC $ side cuts $ BC $ side at $ O $ point and $ AB $ side extension at $ G$ point. Prove that the $ GOKU $ quad is cyclic, meaning its four vertices are at same circumference
1997 Argentina National Olympiad, 2
Let $ABC$ be a triangle and $M$ be the midpoint of $AB$. If it is known that $\angle CAM + \angle MCB = 90^o$, show that triangle $ABC$ is isosceles or right.
Kyiv City MO Juniors 2003+ geometry, 2021.9.51
Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. A line passing through point $B$ intersects $\omega_1$ for the second time at point $C$ and $\omega_2$ at point $D$. The line $AC$ intersects circle $\omega_2$ for the second time at point $F$, and the line $AD$ intersects the circle $\omega_1$ for the second time at point $E$ . Let point $O$ be the center of the circle circumscribed around $\vartriangle AEF$. Prove that $OB \perp CD$.
2023 Iranian Geometry Olympiad, 5
A polygon is decomposed into triangles by drawing some non-intersecting interior diagonals in such a way that for every pair of triangles of the triangulation sharing a common side, the sum of the angles opposite to this common side is greater than $180^o$.
a) Prove that this polygon is convex.
b) Prove that the circumcircle of every triangle used in the decomposition contains the entire polygon.
[i]Proposed by Morteza Saghafian - Iran[/i]
2021 VIASM Math Olympiad Test, Problem 1
Given a $8$x$8$ square board
a) Prove that: for any ways to color the board, we are always be able to find a rectangle consists of $8$ squares such that these squares are not colored.
b) Prove that: we can color $7$ squares on the board such that for any rectangles formed by $\geq 9$ squares, there are at least $1$ colored square.
2002 India IMO Training Camp, 12
Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.
2005 Turkey Junior National Olympiad, 1
Let $ABC$ be an acute triangle. Let$H$ and $D$ be points on $[AC]$ and $[BC]$, respectively, such that $BH \perp AC$ and $HD \perp BC$. Let $O_1$ be the circumcenter of $\triangle ABH$, and $O_2$ be the circumcenter of $\triangle BHD$, and $O_3$ be the circumcenter of $\triangle HDC$. Find the ratio of area of $\triangle O_1O_2O_3$ and $\triangle ABH$.
Math Hour Olympiad, Grades 5-7, 2014.57
[u]Round 1[/u]
[b]p1.[/b] Three snails – Alice, Bobby, and Cindy – were racing down a road.
Whenever one snail passed another, it waved at the snail it passed.
During the race, Alice waved $3$ times and was waved at twice.
Bobby waved $4$ times and was waved at $3$ times.
Cindy waved $5$ times. How many times was she waved at?
[b]p2.[/b] Sherlock and Mycroft are playing Battleship on a $4\times 4$ grid. Mycroft hides a single $3\times 1$ cruiser somewhere on the board. Sherlock can pick squares on the grid and fire upon them. What is the smallest number of shots Sherlock has to fire to guarantee at least one hit on the cruiser?
[b]p3.[/b] Thirty girls – $13$ of them in red dresses and $17$ in blue dresses – were dancing in a circle, hand-in-hand. Afterwards, each girl was asked if the girl to her right was in a blue dress. Only the girls who had both neighbors in red dresses or both in blue dresses told the truth. How many girls could have answered “Yes”?
[b]p4.[/b] Herman and Alex play a game on a $5\times 5$ board. On his turn, a player can claim any open square as his territory. Once all the squares are claimed, the winner is the player whose territory has the longer border. Herman goes first. If both play their best, who will win, or will the game end in a draw?
[img]https://cdn.artofproblemsolving.com/attachments/5/7/113d54f2217a39bac622899d3d3eb51ec34f1f.png[/img]
[b]p5.[/b] Is it possible to find $2014$ distinct positive integers whose sum is divisible by each of them?
[u]Round 2[/u]
[b]p6.[/b] Hermione and Ron play a game that starts with 129 hats arranged in a circle. They take turns magically transforming the hats into animals. On each turn, a player picks a hat and chooses whether to change it into a badger or into a raven. A player loses if after his or her turn there are two animals of the same species right next to each other. Hermione goes first. Who loses?
[b]p7.[/b] Three warring states control the corner provinces of the island whose map is shown below.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/4e2f436be1dcd3f899aa34145356f8c66cda82.png[/img]
As a result of war, each of the remaining $18$ provinces was occupied by one of the states. None of the states was able to occupy any province on the coast opposite their corner. The states would like to sign a peace treaty. To do this, they each must send ambassadors to a place where three provinces, one controlled by each state, come together. Prove that they can always find such a place to meet.
For example, if the provinces are occupied as shown here, the squares mark possible meeting spots.
[img]https://cdn.artofproblemsolving.com/attachments/e/b/81de9187951822120fc26024c1c1fbe2138737.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Yasinsky Geometry Olympiad, 6
Let $\omega$ be the circumscribed circle of the triangle $ABC$, in which $AC< AB$, $K$ is the center of the arc $BAC$, $KW$ is the diameter of the circle $\omega$. The circle $\gamma$ is inscribed in the curvilinear triangle formed by the segments $BC$, $AB$ and the arc $AC$ of the circle $\omega$. It turned out that circle $\gamma$ also touches $KW$ at point $F$. Let $I$ be the center of the triangle $ABC$, $M$ is the midpoint of the smaller arc $AK$, and $T$ is the second intersection point of $MI$ with the circle $\omega$. Prove that lines $FI$, $TW$ and $BC$ intersect at one point.
(Mykhailo Sydorenko)
1999 Tuymaada Olympiad, 1
50 knights of King Arthur sat at the Round Table. A glass of white or red wine stood before each of them. It is known that at least one glass of red wine and at least one glass of white wine stood on the table. The king clapped his hands twice. After the first clap every knight with a glass of red wine before him took a glass from his left neighbour. After the second clap every knight with a glass of white wine (and possibly something more) before him gave this glass to the left neughbour of his left neighbour. Prove that some knight was left without wine.
[i]Proposed by A. Khrabrov, incorrect translation from Hungarian[/i]
2010 Sharygin Geometry Olympiad, 2
Two points $A$ and $B$ are given. Find the locus of points $C$ such that triangle $ABC$ can be covered by a circle with radius $1$.
(Arseny Akopyan)
2021 Durer Math Competition Finals, 13
The trapezoid $ABCD$ satisfies $AB \parallel CD$, $AB = 70$, $AD = 32$ and $BC = 49$. We also know that $\angle ABC = 3 \angle ADC$. How long is the base $CD$?
2016 Ecuador Juniors, 3
Let $P_1P_2 . . . P_{2016 }$ be a cyclic polygon of $2016$ sides. Let $K$ be a point inside the polygon and let $M$ be the midpoint of the segment $P_{1000}P_{2000}$. Knowing that $KP_1 = KP_{2011} = 2016$ and $KM$ is perpendicular to $P_{1000}P_{2000}$, find the length of segment $KP_{2016}$.
2012 Tournament of Towns, 6
(a) A point $A$ is marked inside a sphere. Three perpendicular lines drawn through $A$ intersect the sphere at six points. Prove that the centre of gravity of these six points does not depend on the choice of such three lines.
(b) An icosahedron with the centre $A$ is placed inside a sphere (its centre does not necessarily coincide with the centre of the sphere). The rays going from $A$ to the vertices of the icosahedron mark $12$ points on the sphere. Then the icosahedron is rotated about its centre. New rays mark new $12$ points on the sphere. Let $O$ and $N$ be the centres of mass of old and new points respectively. Prove that $O = N$.
2022 Sharygin Geometry Olympiad, 23
An ellipse with focus $F$ is given. Two perpendicular lines passing through $F$ meet the ellipse at four points. The tangents to the ellipse at these points form a quadrilateral circumscribed around the ellipse. Prove that this quadrilateral is inscribed into a conic with focus $F$
1991 Greece National Olympiad, 2
Let $O$ be the circumcenter of triangle $ABC$ and let $A_1,B_1,C_1$ be the midpoints of arcs $BC, CA,AB$ respectively. If $I$ is the incenter of triangle $ABC$, prove that $$\overrightarrow{OI}= \overrightarrow{OA_1}+ \overrightarrow{OB_1}+ \overrightarrow{OC_1}.$$
2014 Contests, 3
The triangle $ABC$ is inscribed in a circle $w_1$. Inscribed in a triangle circle touchs the sides $BC$ in a point $N$. $w_2$ — the circle inscribed in a segment $BAC$ circle of $w_1$, and passing through a point $N$. Let points $O$ and $J$ — the centers of circles $w_2$ and an extra inscribed circle (touching side $BC$) respectively. Prove, that lines $AO$ and $JN$ are parallel.