Found problems: 25757
1962 Dutch Mathematical Olympiad, 1
Given a triangle $ABC$ with $\angle C = 90^o$.
a) Construct the circle with center $C$, so that one of the tangents from $A$ to that circle is parallel to one of the tangents from $B$ to that circle.
b) A circle with center $C$ has two parallel tangents passing through A and go respectively. If $AC = b$ and $BC = a$, express the radius of the circle in terms of $a$ and $b$.
1996 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 9
The triangle $ ABC$ has vertices in such manner that $ AB \equal{} 3, BC \equal{} 4,$ and $ AC \equal{} 5$. The inscribed circle is tangent to $ AB$ in $ C'$, $ BC$ in $ A'$ and $ AC$ in $ B'.$ What is the ratio between the area of the triangles $ A'B'C'$ and $ ABC$?
A. 1/4
B. 1/5
C. 2/9
D. 4/21
E. 5/24
2001 Saint Petersburg Mathematical Olympiad, 10.5
On the bisector $AL$ of triangle $ABC$ a point $K$ is chosen such that $\angle BKL=\angle KBL=30^{\circ}$. Lines $AB$ and $CK$ intersect at point $M$, lines $AC$ and $BK$ intersect at point $N$. FInd the measure of angle $\angle AMN$
[I]Proposed by D. Shiryaev, S. Berlov[/i]
2024 ELMO Problems, 1
In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic.
[i]Tiger Zhang[/i]
1999 IMO, 1
A set $ S$ of points from the space will be called [b]completely symmetric[/b] if it has at least three elements and fulfills the condition that for every two distinct points $ A$ and $ B$ from $ S$, the perpendicular bisector plane of the segment $ AB$ is a plane of symmetry for $ S$. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.
2021 Kyiv Mathematical Festival, 1
Is it possible to mark four points on the plane so that the distances between any point and three other points form an arithmetic progression? (V. Brayman)
2016 Swedish Mathematical Competition, 1
In a garden there is an $L$-shaped fence, see figure. You also have at your disposal two finished straight fence sections that are $13$ m and $14$ m long respectively. From point $A$ you want to delimit a part of the garden with an area of at least $200$ m$^2$ . Is it possible to do this?
[img]https://1.bp.blogspot.com/-VLWIImY7HBA/X0yZq5BrkTI/AAAAAAAAMbg/8CyP6DzfZTE5iX01Qab3HVrTmaUQ7PvcwCK4BGAYYCw/s400/sweden%2B16p1.png[/img]
2022 Irish Math Olympiad, 2
2. Let [i]ABCD [/i]be a square and let $\Gamma$ denote the circle with diameter [i]CD[/i]. A tangent line is drawn to the circle $\Gamma$ from [b][i]B[/i][/b], meeting the circle $\Gamma$ at [i]E[/i] and intersecting the segment [i]AD[/i] at [i]K[/i].
Prove that |[i]AD[/i]| = 4 |[i]KD[/i]|.
2025 Bundeswettbewerb Mathematik, 3
Let $k$ be a semicircle with diameter $AB$ and midpoint $M$. Let $P$ be a point on $k$ different from $A$ and $B$.
The circle $k_A$ touches $k$ in a point $C$, the segment $MA$ in a point $D$, and additionally the segment $MP$. The circle $k_B$ touches $k$ in a point $E$ and additionally the segments $MB$ and $MP$.
Show that the lines $AE$ and $CD$ are perpendicular.
2000 Croatia National Olympiad, Problem 3
A plane intersects a rectangular parallelepiped in a regular hexagon. Prove that the rectangular parallelepiped is a cube.
2011 AIME Problems, 4
In triangle $ABC$, $AB=125,AC=117$, and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.
2010 Belarus Team Selection Test, 8.3
Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$.
[i]Proposed by Nikolay Beluhov, Bulgaria[/i]
Novosibirsk Oral Geo Oly IX, 2019.3
The circle touches the square and goes through its two vertices as shown in the figure. Find the area of the square.
(Distance in the picture is measured horizontally from the midpoint of the side of the square.)
[img]https://cdn.artofproblemsolving.com/attachments/7/5/ab4b5f3f4fb4b70013e6226ce5189f3dc2e5be.png[/img]
1991 Irish Math Olympiad, 1
Three points $X,Y$ and $Z$ are given that are, respectively, the circumcenter of a triangle $ABC$, the mid-point of $BC$, and the foot of the altitude from $B$ on $AC$. Show how to reconstruct the triangle $ABC$.
2022 Novosibirsk Oral Olympiad in Geometry, 6
A triangle $ABC$ is given in which $\angle BAC = 40^o$. and $\angle ABC = 20^o$. Find the length of the angle bisector drawn from the vertex $C$, if it is known that the sides $AB$ and $BC$ differ by $4$ centimeters.
2009 Bosnia Herzegovina Team Selection Test, 2
Line $p$ intersects sides $AB$ and $BC$ of triangle $\triangle ABC$ at points $M$ and $K.$ If area of triangle $\triangle MBK$ is equal to area of quadrilateral $AMKC,$ prove that \[\frac{\left|MB\right|+\left|BK\right|}{\left|AM\right|+\left|CA\right|+\left|KC\right|}\geq\frac{1}{3}\]
1974 Chisinau City MO, 85
We will say that a convex polygon $M$ has the property $(*)$ if the straight lines on which its sides lie, being moved outward by a distance of $1$ cm, form a polygon $M'$, similar to this one.
a) Prove that if a convex polygon has property $(*)$ , then a circle can be inscribed in it.
b) Find the fourth side of a quadrilateral satisfying condition $(*)$ if the lengths of its three consecutive sides are $9, 7$, and $3$ cm.
2016 AMC 10, 23
In regular hexagon $ABCDEF$, points $W$, $X$, $Y$, and $Z$ are chosen on sides $\overline{BC}$, $\overline{CD}$, $\overline{EF}$, and $\overline{FA}$ respectively, so lines $AB$, $ZW$, $YX$, and $ED$ are parallel and equally spaced. What is the ratio of the area of hexagon $WCXYFZ$ to the area of hexagon $ABCDEF$?
$\textbf{(A)}\ \frac{1}{3}\qquad\textbf{(B)}\ \frac{10}{27}\qquad\textbf{(C)}\ \frac{11}{27}\qquad\textbf{(D)}\ \frac{4}{9}\qquad\textbf{(E)}\ \frac{13}{27}$
2014 AIME Problems, 5
Let the set $S = \{P_1, P_2, \cdots, P_{12}\}$ consist of the twelve vertices of a regular $12$-gon. A subset $Q$ of $S$ is called communal if there is a circle such that all points of $Q$ are inside the circle, and all points of $S$ not in $Q$ are outside of the circle. How many communal subsets are there? (Note that the empty set is a communal subset.)
2006 China Team Selection Test, 1
Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.
MMPC Part II 1958 - 95, 1975
[b]p1.[/b] a) Given four points in the plane, no three of which lie on the same line, each subset of three points determines the vertices of a triangle. Can all these triangles have equal areas? If so, give an example of four points (in the plane) with this property, and then describe all arrangements of four joints (in the plane) which permit this. If no such arrangement exists, prove this.
b) Repeat part a) with "five" replacing "four" throughout.
[b]p2.[/b] Three people at the base of a long stairway begin a race up the stairs. Person A leaps five steps with each stride (landing on steps $5$, $10$, $15$, etc.). Person B leaps a little more slowly but covers six steps with each stride. Person C leaps seven steps with each stride. A picture taken near the end of the race shows all three landing simultaneously, with Person A twenty-one steps from the top, person B seven steps from the top, and Person C one step from the top. How many steps are there in the stairway? If you can find more than one answer, do so. Justify your answer.
[b]p3. [/b]Let $S$ denote the sum of an infinite geometric series. Suppose the sum of the squares of the terms is $2S$, and that df the cubes is $64S/13$. Find the first three terms of the original series.
[b]p4.[/b] $A$, $B$ and $C$ are three equally spaced points on a circular hoop. Prove that as the hoop rolls along the horizontal line $\ell$, the sum of the distances of the points $A, B$, and $C$ above line $\ell$ is constant.
[img]https://cdn.artofproblemsolving.com/attachments/3/e/a1efd0975cf8ff3cf6acb1da56da1dce35d81e.png[/img]
[b]p5.[/b] A set of $n$ numbers $x_1,x_2,x_3,...,x_n$ (where $n>1$) has the property that the $k^{th}$ number (that is, $x_k$ ) is removed from the set, the remaining $(n-1)$ numbers have a sum equal to $k$ (the subscript o $x_k$ ), and this is true for each $k = 1,2,3,...,n$.
a) SoIve for these $n$ numbers
b) Find whether at least one of these $n$ numbers can be an integer.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1979 Spain Mathematical Olympiad, 7
Prove that the volume of a tire (torus) is equal to the volume of a cylinder whose base is a meridian section of that and whose height is the length of the circumference formed by the centers of the meridian sections.
Ukraine Correspondence MO - geometry, 2007.11
Denote by $B_1$ and $C_1$, the midpoints of the sides $AB$ and $AC$ of the triangle $ABC$. Let the circles circumscribed around the triangles $ABC_1$ and $AB_1C$ intersect at points $A$ and $P$, and let the line $AP$ intersect the circle circumscribed around the triangle $ABC$ at points $A$ and $Q$. Find the ratio $\frac{AQ}{AP}$.
2006 Estonia Team Selection Test, 2
The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.
2022 Saudi Arabia IMO TST, 1
Let $ABCD$ be a parallelogram with $AC=BC.$ A point $P$ is chosen on the extension of ray $AB$ past $B.$ The circumcircle of $ACD$ meets the segment $PD$ again at $Q.$ The circumcircle of triangle $APQ$ meets the segment $PC$ at $R.$ Prove that lines $CD,AQ,BR$ are concurrent.