Found problems: 25757
2006 Taiwan National Olympiad, 3
Let the major axis of an ellipse be $AB$, let $O$ be its center, and let $F$ be one of its foci. $P$ is a point on the ellipse, and $CD$ a chord through $O$, such that $CD$ is parallel to the tangent of the ellipse at $P$. $PF$ and $CD$ intersect at $Q$. Compare the lengths of $PQ$ and $OA$.
1990 Tournament Of Towns, (262) 6
There are some ink-blots on a white paper square with side length $a$. The area of each blot is not greater than $1$ and every line parallel to any one of the sides of the square intersects no more than one blot. Prove that the total area of the blots is not greater than $a$.
(A. Razborov, Moscow)
2000 Romania Team Selection Test, 3
Let $S$ be the set of interior points of a sphere and $C$ be the set of interior points of a circle. Find, with proof, whether there exists a function $f:S\rightarrow C$ such that $d(A,B)\le d(f(A),f(B))$ for any two points $A,B\in S$ where $d(X,Y)$ denotes the distance between the points $X$ and $Y$.
[i]Marius Cavachi[/i]
2020 AIME Problems, 4
Triangles $\triangle ABC$ and $\triangle A'B'C'$ lie in the coordinate plane with vertices $A(0,0)$, $B(0,12)$, $C(16,0)$, $A'(24,18)$, $B'(36,18)$, and $C'(24,2)$. A rotation of $m$ degrees clockwise around the point $(x,y)$, where $0<m<180$, will transform $\triangle ABC$ to $\triangle A'B'C'$. Find $m+x+y$.
1999 Bulgaria National Olympiad, 3
The vertices of a triangle have integer coordinates and one of its sides is of length $\sqrt{n}$, where $n$ is a square-free natural number. Prove that the ratio of the circumradius and the inradius is an irrational number.
1989 Polish MO Finals, 2
$k_1, k_2, k_3$ are three circles. $k_2$ and $k_3$ touch externally at $P$, $k_3$ and $k_1$ touch externally at $Q$, and $k_1$ and $k_2$ touch externally at $R$. The line $PQ$ meets $k_1$ again at $S$, the line $PR$ meets $k_1$ again at $T$. The line $RS$ meets $k_2$ again at $U$, and the line $QT$ meets $k_3$ again at $V$. Show that $P, U, V$ are collinear.
1974 Chisinau City MO, 82
Is there a moment in a day when three hands - hour, minute and second - of a clock running correctly form angles of $120^o$ in pairs?
2016 Saudi Arabia BMO TST, 2
Let $I$ be the incenter of an acute triangle $ABC$. Assume that $K_1$ is the point such that $AK_1 \perp BC$ and the circle with center $K_1$ of radius $K_1A$ is internally tangent to the incircle of triangle $ABC$ at $A_1$. The points $B_1, C_1$ are defined similarly.
a) Prove that $AA_1, BB_1, CC_1$ are concurrent at a point $P$.
b) Let $\omega_1,\omega_2,\omega_3$ be the excircles of triangle $ABC$ with respect to $A, B, C$, respectively. The circles $\gamma_1,\gamma_2\gamma_3$ are the reflections of $\omega_1,\omega_2,\omega_3$ with respect to the midpoints of $BC, CA, AB$, respectively. Prove that P is the radical center of $\gamma_1,\gamma_2,\gamma_3$.
1997 AMC 12/AHSME, 23
In the figure, polygons $ A$, $ E$, and $ F$ are isosceles right triangles; $ B$, $ C$, and $ D$ are squares with sides of length $ 1$; and $ G$ is an equilateral triangle. The figure can be folded along its edges to form a polyhedron having the polygons as faces. The volume of this polyhedron is
$ \textbf{(A)}\ 1/2\qquad \textbf{(B)}\ 2/3\qquad \textbf{(C)}\ 3/4\qquad \textbf{(D)}\ 5/6\qquad \textbf{(E)}\ 4/3$
[asy]
size(180);
defaultpen(linewidth(.7pt)+fontsize(10pt));
draw((-1,1)--(2,1));
draw((-1,0)--(1,0));
draw((-1,1)--(-1,0));
draw((0,-1)--(0,3));
draw((1,2)--(1,0));
draw((-1,1)--(1,1));
draw((0,2)--(1,2));
draw((0,3)--(1,2));
draw((0,-1)--(2,1));
draw((0,-1)--((0,-1) + sqrt(2)*dir(-15)));
draw(((0,-1) + sqrt(2)*dir(-15))--(1,0));
label("$\textbf{A}$",foot((0,2),(0,3),(1,2)),SW);
label("$\textbf{B}$",midpoint((0,1)--(1,2)));
label("$\textbf{C}$",midpoint((-1,0)--(0,1)));
label("$\textbf{D}$",midpoint((0,0)--(1,1)));
label("$\textbf{E}$",midpoint((1,0)--(2,1)),NW);
label("$\textbf{F}$",midpoint((0,-1)--(1,0)),NW);
label("$\textbf{G}$",midpoint((0,-1)--(1,0)),2SE);[/asy]
2018 Mediterranean Mathematics OIympiad, 2
Let $ABC$ be acute triangle. Let $E$ and $F$ be points on $BC$, such that angles $BAE$ and $FAC$ are equal. Lines $AE$ and $AF$ intersect cirumcircle of $ABC$ at points $M$ and $N$. On rays $AB$ and $AC$ we have points $P$ and $R$, such that angle $PEA$ is equal to angle $B$ and angle $AER$ is equal to angle $C$. Let $L$ be intersection of $AE$ and $PR$ and $D$ be intersection of $BC$ and $LN$. Prove that
$$\frac{1}{|MN|}+\frac{1}{|EF|}=\frac{1}{|ED|}.$$
1985 IMO Longlists, 94
A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.
1985 ITAMO, 15
Three 12 cm $\times$ 12 cm squares are each cut into two pieces $A$ and $B$, as shown in the first figure below, by joining the midpoints of two adjacent sides. These six pieces are then attached to a regular hexagon, as shown in the second figure, so as to fold into a polyhedron. What is the volume (in $\text{cm}^3$) of this polyhedron?
[asy]
defaultpen(fontsize(10));
size(250);
draw(shift(0, sqrt(3)+1)*scale(2)*rotate(45)*polygon(4));
draw(shift(-sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(165)*polygon(4));
draw(shift(sqrt(3)*(sqrt(3)+1)/2, -(sqrt(3)+1)/2)*scale(2)*rotate(285)*polygon(4));
filldraw(scale(2)*polygon(6), white, black);
pair X=(2,0)+sqrt(2)*dir(75), Y=(-2,0)+sqrt(2)*dir(105), Z=(2*dir(300))+sqrt(2)*dir(225);
pair[] roots={2*dir(0), 2*dir(60), 2*dir(120), 2*dir(180), 2*dir(240), 2*dir(300)};
draw(roots[0]--X--roots[1]);
label("$B$", centroid(roots[0],X,roots[1]));
draw(roots[2]--Y--roots[3]);
label("$B$", centroid(roots[2],Y,roots[3]));
draw(roots[4]--Z--roots[5]);
label("$B$", centroid(roots[4],Z,roots[5]));
label("$A$", (1+sqrt(3))*dir(90));
label("$A$", (1+sqrt(3))*dir(210));
label("$A$", (1+sqrt(3))*dir(330));
draw(shift(-10,0)*scale(2)*polygon(4));
draw((sqrt(2)-10,0)--(-10,sqrt(2)));
label("$A$", (-10,0));
label("$B$", centroid((sqrt(2)-10,0),(-10,sqrt(2)),(sqrt(2)-10, sqrt(2))));[/asy]
1990 Nordic, 3
Let $ABC$ be a triangle and let $P$ be an interior point of $ABC$. We assume that a line $l$, which passes through $P$, but not through $A$, intersects $AB$ and $AC$ (or their extensions over $B$ or $C$) at $Q$ and $R$, respectively. Find $l$ such that the perimeter of the triangle $AQR$ is as small as possible.
2007 IberoAmerican, 6
Let $ \mathcal{F}$ be a family of hexagons $ H$ satisfying the following properties:
i) $ H$ has parallel opposite sides.
ii) Any 3 vertices of $ H$ can be covered with a strip of width 1.
Determine the least $ \ell\in\mathbb{R}$ such that every hexagon belonging to $ \mathcal{F}$ can be covered with a strip of width $ \ell$.
Note: A strip is the area bounded by two parallel lines separated by a distance $ \ell$. The lines belong to the strip, too.
2020 JHMT, 12
Circle $O$ is inscribed inside a non-isosceles trapezoid $JHMT$, tangent to all four of its sides. The longer of the two parallel sides of $JHMT$ is $\overline{JH}$ and has a length of $24$ units. Let $P$ be the point where $O$ is tangent to $\overline{JH}$, and let $Q$ be the point where $O$ is tangent to $\overline{MT}$. The circumcircle of $\vartriangle JQH$ intersects $O$ a second time at point $R$. $\overleftrightarrow{QR}$ intersects $\overleftrightarrow{JH}$ at point $S$, $35$ units away from $P$. The points inside $JHMT$ at which $\overline{JQ}$ and $\overline{HQ}$ intersect $O$ lie $\frac{63}{4}$ units apart. The area of $O$ can be expressed as $\frac{m\pi}{n}$ , where $\frac{m}{n}$ is a common fraction. Compute $m + n$.
2006 Singapore MO Open, 1
In the triangle $ABC,\angle A=\frac{\pi}{3},D,M$ are points on the line $AC$ and $E,N$ are points on the line $AB$ such that $DN$ and $EM$ are the perpendicular bisectors of $AC$ and $AB$ respectively. Let $L$ be the midpoint of $MN$. Prove that $\angle EDL=\angle ELD$
2021 Saint Petersburg Mathematical Olympiad, 3
Given a convex pentagon $ABCDE$, points $A_1, B_1, C_1, D_1, E_1$ are such that $$AA_1 \perp BE, BB_1 \perp AC, CC_1 \perp BD, DD_1 \perp CE, EE_1 \perp DA.$$ In addition, $AE_1 = AB_1, BC_1 = BA_1, CB_1 = CD_1$ and $DC_1 = DE_1$. Prove that $ED_1 = EA_1$
2015 IFYM, Sozopol, 1
Let $AA_1$ be an altitude in $\Delta ABC$. Let $H_a$ be the orthocenter of the triangle with vertices the tangential points of the excircle to $\Delta ABC$, opposite to $A$. The points $B_1$, $C_1$, $H_b$, and $H_c$ are defined analogously. Prove that $A_1 H_a$, $B_1 H_b$, and $C_1 H_c$ are concurrent.
2011 AMC 10, 20
Two points on the circumference of a circle of radius r are selected independently and at random. From each point a chord of length r is drawn in a clockwise direction. What is the probability that the two chords intersect?
$ \textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{1}{5}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2} $
2013 China Western Mathematical Olympiad, 6
Let $PA, PB$ be tangents to a circle centered at $O$, and $C$ a point on the minor arc $AB$. The perpendicular from $C$ to $PC$ intersects internal angle bisectors of $AOC,BOC$ at $D,E$. Show that $CD=CE$
2008 Junior Balkan Team Selection Tests - Moldova, 3
Rhombuses $ABCD$ and $A_1B_1C_1D_1$ are equal. Side $BC$ intersects sides $B_1C_1$ and $C_1D_1$ at points $M$ and $N$ respectively. Side $AD$ intersects sides $A_1B_1$ and $A_1D_1$ at points $Q$ and $P$ respectively. Let $O$ be the intersection point of lines $MP$ and $QN$. Find $\angle A_1B_1C_1$ , if $\angle QOP = \frac12 \angle B_1C_1D_1$.
1980 All Soviet Union Mathematical Olympiad, 299
Let the edges of rectangular parallelepiped be $x,y$ and $z$ ($x<y<z$). Let
$$p=4(x+y+z), s=2(xy+yz+zx) \,\,\, and \,\,\, d=\sqrt{x^2+y^2+z^2}$$ be its perimeter, surface area and diagonal length, respectively. Prove that $$x < \frac{1}{3}\left( \frac{p}{4}- \sqrt{d^2 - \frac{s}{2}}\right )\,\,\, and \,\,\, z > \frac{1}{3}\left( \frac{p}{4}- \sqrt{d^2 - \frac{s}{2}}\right )$$
2008 HMNT, 10
Find the largest positive integer $n$ such that $n^3 + 4n^2 - 15n - 18$ is the cube of an integer.
2023 Moldova EGMO TST, 6
Let there be a square $ABCD$. Points $E$ and $F$ are on sides $(BC)$ and $(AB)$ such that $BF=CE$. LInes $AE$ and $CF$ intersect in point $G$. Prove that $EF$ and $DG$ are perpendicular.
2019 Canadian Mathematical Olympiad Qualification, 6
Pentagon $ABCDE$ is given in the plane. Let the perpendicular from $A$ to line $CD$ be $F$, the perpendicular from $B$ to $DE$ be $G$, from $C$ to $EA$ be $H$, from $D$ to $AB$ be $I$,and from $E$ to $BC$ be $J$. Given that lines $AF,BG,CH$, and $DI$ concur, show that they also concur with line $EJ$.