This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2009 USAMTS Problems, 5

Let $ABC$ be a triangle with $AB = 3, AC = 4,$ and $BC = 5$, let $P$ be a point on $BC$, and let $Q$ be the point (other than $A$) where the line through $A$ and $P$ intersects the circumcircle of $ABC$. Prove that \[PQ\le \frac{25}{4\sqrt{6}}.\]

2004 Germany Team Selection Test, 2

Three distinct points $A$, $B$, and $C$ are fixed on a line in this order. Let $\Gamma$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. Denote by $P$ the intersection of the tangents to $\Gamma$ at $A$ and $C$. Suppose $\Gamma$ meets the segment $PB$ at $Q$. Prove that the intersection of the bisector of $\angle AQC$ and the line $AC$ does not depend on the choice of $\Gamma$.

2017 Sharygin Geometry Olympiad, 6

Tags: area , geometry , ratio
Let $ABC$ be a right-angled triangle ($\angle C = 90^\circ$) and $D$ be the midpoint of an altitude from C. The reflections of the line $AB$ about $AD$ and $BD$, respectively, meet at point $F$. Find the ratio $S_{ABF}:S_{ABC}$. Note: $S_{\alpha}$ means the area of $\alpha$.

2022 Tuymaada Olympiad, 8

Tags: sine , median , geometry
In an acute triangle $\triangle ABC$ the points $C_m, A_m, B_m$ are the midpoints of $AB, BC, CA$ respectively. Inside the triangle $\triangle ABC$ a point $P$ is chosen so that $\angle PCB = \angle B_mBC$ and $\angle PAB = \angle ABB_m.$ A line passing through $P$ and perpendicular to $AC$ meets the median $BB_m$ at $E.$ Prove that $E$ lies on the circumcircle of the triangle $\triangle A_mB_mC_m.$ [i](K. Ivanov )[/i]

2017 Turkey MO (2nd round), 2

Tags: geometry
Let $ABCD$ be a quadrilateral such that line $AB$ intersects $CD$ at $X$. Denote circles with inradius $r_1$ and centers $A, B$ as $w_a$ and $w_b$ with inradius $r_2$ and centers $C, D$ as $w_c$ and $w_d$. $w_a$ intersects $w_d$ at $P, Q$. $w_b$ intersects $w_c$ at $R, S$. Prove that if $XA.XB+r_2^2=XC.XD+r_1^2$, then $P,Q,R,S$ are cyclic.

2019 Costa Rica - Final Round, G2

Let $H$ be the orthocenter and $O$ the circumcenter of the acute triangle $\vartriangle ABC$. The circle with center $H$ and radius $HA$ intersects the lines $AC$ and $AB$ at points $P$ and $Q$, respectively. Let point $O$ be the orthocenter of triangle $\vartriangle APQ$, determine the measure of $\angle BAC$.

1997 Tournament Of Towns, (554) 4

Two circles intersect at points $A$ and $B$. A common tangent touches the first circle at point $C$ and the second at point $D$. Let $\angle CBD > \angle CAD$. Let the line $CB$ intersect the second circle again at point $E$. Prove that $AD$ bisects the angle $\angle CAE$. (P Kozhevnikov)

1978 IMO Longlists, 49

Tags: geometry
Let $A,B,C,D$ be four arbitrary distinct points in space. $(a)$ Prove that using the segments $AB +CD, AC +BD$ and $AD +BC$, it is always possible to construct a triangle $T$ that is non-degenerate and has no obtuse angle. $(b)$ What should these four points satisfy in order for the triangle $T$ to be right-angled?

1972 Dutch Mathematical Olympiad, 3

$ABCD$ is a regular tetrahedron. The points $P,Q,R$ and $S$ lie outside this tetrahedron in such a way that $ABCP$, $ABDQ$, $ACDR$ and $BCDS$ are regular tetrahedra. Prove that the volume of the tetrahedron $PQRS$ is less than the sum of the volumes of $ABCP$,$ABDQ$,$ACDR$, $BCDS$ and $ABCD$.

2014 Thailand TSTST, 3

Let $O$ be the incenter of a tangential quadrilateral $ABCD$. Prove that the orthocenters of $\vartriangle AOB$, $\vartriangle BOC$, $\vartriangle COD$, $\vartriangle DOA$ lie on a line.

1983 IMO Longlists, 75

Tags: geometry
Find the sum of the fiftieth powers of all sides and diagonals of a regular $100$-gon inscribed in a circle of radius $R.$

MBMT Team Rounds, 2020.20

Sam colors each tile in a 4 by 4 grid white or black. A coloring is called [i]rotationally symmetric[/i] if the grid can be rotated 90, 180, or 270 degrees to achieve the same pattern. Two colorings are called [i]rotationally distinct[/i] if neither can be rotated to match the other. How many rotationally distinct ways are there for Sam to color the grid such that the colorings are [i]not[/i] rotationally symmetric? [i]Proposed by Gabriel Wu[/i]

2020 SAFEST Olympiad, 3

Let $\mathcal L$ be the set of all lines in the plane and let $f$ be a function that assigns to each line $\ell\in\mathcal L$ a point $f(\ell)$ on $\ell$. Suppose that for any point $X$, and for any three lines $\ell_1,\ell_2,\ell_3$ passing through $X$, the points $f(\ell_1),f(\ell_2),f(\ell_3)$, and $X$ lie on a circle. Prove that there is a unique point $P$ such that $f(\ell)=P$ for any line $\ell$ passing through $P$. [i]Australia[/i]

2013 AMC 10, 15

Tags: geometry , ratio
A wire is cut into two pieces, one of length $a$ and the other of length $b$. The piece of length $a$ is bent to form an equilateral triangle, and the piece of length $b$ is bent to form a regular hexagon. The triangle and the hexagon have equal area. What is $\frac{a}{b}$? ${ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{\sqrt{6}}{2} \qquad\textbf{(C)}\ \sqrt{3}\qquad\textbf{(D}}\ 2 \qquad\textbf{(E)}\ \frac{3\sqrt{2}}{2} $

1951 Poland - Second Round, 5

Prove that if the relationship between the sides and opposite angles $ A $ and $ B $ of the triangle $ ABC $ is $$ (a^2 + b^2) \sin (A - B) = (a^2 - b^2) \sin (A + B)$$ then such a triangle is right-angled or isosceles.

2009 Ukraine National Mathematical Olympiad, 4

Let $ABCD$ be a parallelogram with $\angle BAC = 45^\circ,$ and $AC > BD .$ Let $w_1$ and $w_2$ be two circles with diameters $AC$ and $DC,$ respectively. The circle $w_1$ intersects $AB$ at $E$ and the circle $w_2$ intersects $AC$ at $O$ and $C$, and $AD$ at $F.$ Find the ratio of areas of triangles $AOE$ and $COF$ if $AO = a,$ and $FO = b .$

1983 Brazil National Olympiad, 2

An equilateral triangle $ABC$ has side a. A square is constructed on the outside of each side of the triangle. A right regular pyramid with sloping side $a$ is placed on each square. These pyramids are rotated about the sides of the triangle so that the apex of each pyramid comes to a common point above the triangle. Show that when this has been done, the other vertices of the bases of the pyramids (apart from the vertices of the triangle) form a regular hexagon.

KoMaL A Problems 2022/2023, A. 834

Let $A_1A_2\ldots A_8$ be a convex cyclic octagon, and for $i=1,2\ldots,8$ let $B_i=A_iA_{i+3}\cap A_{i+1}A_{i+4}$ (indices are meant modulo 8). Prove that points $B_1,\ldots, B_8$ lie on the same conic section.

2003 May Olympiad, 2

The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .

2017 Regional Olympiad of Mexico Northeast, 4

Let $\Gamma$ be the circumcircle of the triangle $ABC$ and let $M$ be the midpoint of the arc $\Gamma$ containing $A$ and bounded by $B$ and $C$. Let $P$ and $Q$ be points on the segments $AB$ and $AC$, respectively, such that $BP = CQ$. Prove that $APQM$ is a cyclic quadrilateral.

2000 India National Olympiad, 4

In a convex quadrilateral $PQRS$, $PQ =RS$, $(\sqrt{3} +1 )QR = SP$ and $\angle RSP - \angle SQP = 30^{\circ}$. Prove that $\angle PQR - \angle QRS = 90^{\circ}.$

MOAA Gunga Bowls, 2018

[u]Set 1[/u] [b]p1.[/b] Find $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11$. [b]p2.[/b] Find $1 \cdot 11 + 2 \cdot 10 + 3 \cdot 9 + 4 \cdot 8 + 5 \cdot 7 + 6 \cdot 6$. [b]p3.[/b] Let $\frac{1}{1\cdot 2} +\frac{1}{2\cdot 3} +\frac{1}{3\cdot 4} +\frac{1}{4\cdot 5} +\frac{1}{5\cdot 6} +\frac{1}{6\cdot 7} +\frac{1}{7\cdot 8} +\frac{1}{8\cdot 9} +\frac{1}{9\cdot 10} +\frac{1}{10\cdot 11} =\frac{m}{n}$ , where $m$ and $n$ are positive integers that share no prime divisors. Find $m + n$. [u]Set 2[/u] [b]p4.[/b] Define $0! = 1$ and let $n! = n \cdot (n - 1)!$ for all positive integers $n$. Find the value of $(2! + 0!)(1! + 8!)$. [b]p5.[/b] Rachel’s favorite number is a positive integer $n$. She gives Justin three clues about it: $\bullet$ $n$ is prime. $\bullet$ $n^2 - 5n + 6 \ne 0$. $\bullet$ $n$ is a divisor of $252$. What is Rachel’s favorite number? [b]p6.[/b] Shen eats eleven blueberries on Monday. Each day after that, he eats five more blueberries than the day before. For example, Shen eats sixteen blueberries on Tuesday. How many blueberries has Shen eaten in total before he eats on the subsequent Monday? [u]Set 3[/u] [b]p7.[/b] Triangle $ABC$ satisfies $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ can be expressed in the form $m\sqrt{n}$, where $n$ is not divisible by the square of a prime, then determine $m + n$. [b]p8.[/b] Sebastian is playing the game Split! on a coordinate plane. He begins the game with one token at $(0, 0)$. For each move, he is allowed to select a token on any point $(x, y)$ and take it off the plane, replacing it with two tokens, one at $(x + 1, y)$, and one at $(x, y + 1)$. At the end of the game, for a token on $(a, b)$, it is assigned a score $\frac{1}{2^{a+b}}$ . These scores are summed for his total score. Determine the highest total score Sebastian can get in $100$ moves. [b]p9.[/b] Find the number of positive integers $n$ satisfying the following two properties: $\bullet$ $n$ has either four or five digits, where leading zeros are not permitted, $\bullet$ The sum of the digits of $n$ is a multiple of $3$. [u]Set 4[/u] [b]p10.[/b] [i]A unit square rotated $45^o$ about a vertex, Sweeps the area for Farmer Khiem’s pen. If $n$ is the space the pigs can roam, Determine the floor of $100n$.[/i] If $n$ is the area a unit square sweeps out when rotated 4$5$ degrees about a vertex, determine $\lfloor 100n \rfloor$. Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. [img]https://cdn.artofproblemsolving.com/attachments/b/1/129efd0dbd56dc0b4fb742ac80eaf2447e106d.png[/img] [b]p11.[/b][i] Michael is planting four trees, In a grid, three rows of three, If two trees are close, Then both are bulldozed, So how many ways can it be?[/i] In a three by three grid of squares, determine the number of ways to select four squares such that no two share a side. [b]p12.[/b] [i]Three sixty-seven Are the last three digits of $n$ cubed. What is $n$?[/i] If the last three digits of $n^3$ are $367$ for a positive integer $n$ less than $1000$, determine $n$. [u]Set 5[/u] [b]p13.[/b] Determine $\sqrt[4]{97 + 56\sqrt{3}} + \sqrt[4]{97 - 56\sqrt{3}}$. [b]p14. [/b]Triangle $\vartriangle ABC$ is inscribed in a circle $\omega$ of radius $12$ so that $\angle B = 68^o$ and $\angle C = 64^o$ . The perpendicular from $A$ to $BC$ intersects $\omega$ at $D$, and the angle bisector of $\angle B$ intersects $\omega$ at $E$. What is the value of $DE^2$? [b]p15.[/b] Determine the sum of all positive integers $n$ such that $4n^4 + 1$ is prime. [u]Set 6[/u] [b]p16.[/b] Suppose that $p, q, r$ are primes such that $pqr = 11(p + q + r)$ such that $p\ge q \ge r$. Determine the sum of all possible values of $p$. [b]p17.[/b] Let the operation $\oplus$ satisfy $a \oplus b =\frac{1}{1/a+1/b}$ . Suppose $$N = (...((2 \oplus 2) \oplus 2) \oplus ... 2),$$ where there are $2018$ instances of $\oplus$ . If $N$ can be expressed in the form $m/n$, where $m$ and $n$ are relatively prime positive integers, then determine $m + n$. [b]p18.[/b] What is the remainder when $\frac{2018^{1001} - 1}{2017}$ is divided by $2017$? PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777307p24369763]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Novosibirsk Oral Olympiad in Geometry, 2

A ball was launched on a rectangular billiard table at an angle of $45^o$ to one of the sides. Reflected from all sides (the angle of incidence is equal to the angle of reflection), he returned to his original position . It is known that one of the sides of the table has a length of one meter. Find the length of the second side. [img]https://cdn.artofproblemsolving.com/attachments/3/d/e0310ea910c7e3272396cd034421d1f3e88228.png[/img]

2025 Malaysian IMO Training Camp, 1

Tags: geometry
Let $ABC$ be a triangle with $AB<AC$ and with its incircle touching the sides $AB$ and $BC$ at $M$ and $J$ respectively. A point $D$ lies on the extension of $AB$ beyond $B$ such that $AD=AC$. Let $O$ be the midpoint of $CD$. Prove that the points $J$, $O$, $M$ are collinear. [i](Proposed by Tan Rui Xuen)[/i]

1992 ITAMO, 1

A cube is divided into $27$ equal smaller cubes. A plane intersects the cube. Find the maximum possible number of smaller cubes the plane can intersect.