This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2010 Today's Calculation Of Integral, 564

In the coordinate plane with $ O(0,\ 0)$, consider the function $ C: \ y \equal{} \frac 12x \plus{} \sqrt {\frac 14x^2 \plus{} 2}$ and two distinct points $ P_1(x_1,\ y_1),\ P_2(x_2,\ y_2)$ on $ C$. (1) Let $ H_i\ (i \equal{} 1,\ 2)$ be the intersection points of the line passing through $ P_i\ (i \equal{} 1,\ 2)$, parallel to $ x$ axis and the line $ y \equal{} x$. Show that the area of $ \triangle{OP_1H_1}$ and $ \triangle{OP_2H_2}$ are equal. (2) Let $ x_1 < x_2$. Express the area of the figure bounded by the part of $ x_1\leq x\leq x_2$ for $ C$ and line segments $ P_1O,\ P_2O$ in terms of $ y_1,\ y_2$.

2008 AMC 12/AHSME, 9

Points $ A$ and $ B$ are on a circle of radius $ 5$ and $ AB\equal{}6$. Point $ C$ is the midpoint of the minor arc $ AB$. What is the length of the line segment $ AC$? $ \textbf{(A)}\ \sqrt{10} \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ \sqrt{14} \qquad \textbf{(D)}\ \sqrt{15} \qquad \textbf{(E)}\ 4$

Durer Math Competition CD Finals - geometry, 2012.C3

Given a convex quadrilateral whose opposite sides are not parallel, and giving an internal point $P$. Find a parallelogram whose vertices are on the side lines of the rectangle and whose center is $P$. Give a method by which we can construct it (provided there is one). [img]https://1.bp.blogspot.com/-t4aCJza0LxI/X9j1qbSQE4I/AAAAAAAAMz4/V9pr7Cd22G4F320nyRLZMRnz18hMw9NHQCLcBGAsYHQ/s0/2012%2BDurer%2BC3.png[/img]

2022 Kyiv City MO Round 1, Problem 3

Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$. [i](Proposed by Oleksii Masalitin)[/i]

1967 IMO Shortlist, 1

Find whether among all quadrilaterals, whose interiors lie inside a semi-circle of radius $r$, there exist one (or more) with maximum area. If so, determine their shape and area.

1992 AMC 12/AHSME, 26

Tags: geometry
Semicircle $\stackrel{\frown}{AB}$ has center $C$ and radius $1$. Point $D$ is on $\stackrel{\frown}{AB}$ and $\overline{CD} \perp \overline{AB}$. Extend $\overline{BD}$ and $\overline{AD}$ to $E$ and $F$, respectively, so that circular arcs $\stackrel{\frown}{AE}$ and $\stackrel{\frown}{BF}$ have $B$ and $A$ as their respective centers. Circular arc $\stackrel{\frown}{EF}$ has center $D$. The area of the shaded "smile", $AEFBDA$, is [asy] size(200); defaultpen(fontsize(10pt)+linewidth(.8pt)); pair A=(-1,0), B=(1,0), D=(0,-1), C=(0,0), E=(1-sqrt(2),-sqrt(2)), F=(-1+sqrt(2),-sqrt(2)); fill(Arc((1,0),2,180,225)--Arc((0,-1),(2-sqrt(2)),225,315)--Arc((-1,0),2,315,360)--Arc((0,0),1,360,180)--cycle,mediumgray); draw(A--B^^C--D^^A--F^^B--E); draw(Arc((1,0),2,180,225)--Arc((0,-1),(2-sqrt(2)),225,315)--Arc((-1,0),2,315,360)--Arc((0,0),1,360,180)); label("$A$",A,N); label("$B$",B,N); label("$C$",C,N); label("$D$",(-0.1,-.7)); label("$E$",E,SW); label("$F$",F,SE); [/asy] $ \textbf{(A)}\ (2 - \sqrt{2})\pi\qquad\textbf{(B)}\ 2\pi - \pi\sqrt{2} - 1\qquad\textbf{(C)}\ \left(1 - \frac{\sqrt{2}}{2}\right)\pi\qquad\textbf{(D)}\ \frac{5\pi}{2} - \pi\sqrt{2} - 1\qquad\textbf{(E)}\ (3 - 2\sqrt{2})\pi $

2012 Stanford Mathematics Tournament, 3

Express $\frac{2^3-1}{2^3+1}\times\frac{3^3-1}{3^3+1}\times\frac{4^3-1}{4^3+1}\times\dots\times\frac{16^3-1}{16^3+1}$ as a fraction in lowest terms.

2023 Belarusian National Olympiad, 9.8

On the faces of a cube several positive integer numbers are written. On every edge the sum of the numbers of it's two faces is written, and in every vertex the sum of numbers on the three faces that have this vertex. It turned out that all the written numbers are different. Find the smallest possible amount of the sum of all written numbers.

2000 Romania National Olympiad, 3

A function $ f:\mathbb{R}^2\longrightarrow\mathbb{R} $ is [i]olympic[/i] if, any finite number of pairwise distinct elements of $ \mathbb{R}^2 $ at which the function takes the same value represent in the plane the vertices of a convex polygon. Prove that if $ p $ if a complex polynom of degree at least $ 1, $ then the function $ \mathbb{R}^2\ni (x,y)\mapsto |p(x+iy)| $ is olympic if and only if the roots of $ p $ are all equal.

2017 Mathematical Talent Reward Programme, MCQ: P 9

From a point $P$ outside of a circle with centre $O$, tangent segments $PA$ and $PB$ are drawn. $\frac{1}{OA^2}+\frac{1}{PA^2}=\frac{1}{16}$ then $AB=$ [list=1] [*] 4 [*] 6 [*] 8 [*] 10 [/list]

1985 Vietnam National Olympiad, 3

A triangular pyramid $ O.ABC$ with base $ ABC$ has the property that the lengths of the altitudes from $ A$, $ B$ and $ C$ are not less than $ \frac{OB \plus{}OC}{2}$, $ \frac{OC \plus{} OA}{2}$ and $ \frac{OA \plus{} OB}{2}$, respectively. Given that the area of $ ABC$ is $ S$, calculate the volume of the pyramid.

2024 CMIMC Geometry, 10

Tags: geometry
Let $\Omega$ be a unit circle with diameter $AB$ and center $O$. Let $C$, $D$ be on $\Omega$ and lie on the same side of $AB$ such that $\angle CAB = 50^\circ$ and $\angle DBA = 70^\circ$. Suppose $AD$ intersects $BC$ at $E$. Let the perpendicular from $O$ to $CD$ intersect the perpendicular from $E$ to $AB$ at $F$. Find the length of $OF$. [i]Proposed by Puhua Cheng[/i]

2014 Saudi Arabia GMO TST, 3

Let $ABC$ be a triangle, $I$ its incenter, and $\omega$ a circle of center $I$. Points $A',B', C'$ are on $\omega$ such that rays $IA', IB', IC',$ starting from $I$ intersect perpendicularly sides $BC, CA, AB$, respectively. Prove that lines $AA', BB', CC'$ are concurrent.

2013 India Regional Mathematical Olympiad, 1

Let $ABC$ be an isosceles triangle with $AB=AC$ and let $\Gamma$ denote its circumcircle. A point $D$ is on arc $AB$ of $\Gamma$ not containing $C$. A point $E$ is on arc $AC$ of $\Gamma$ not containing $B$. If $AD=CE$ prove that $BE$ is parallel to $AD$.

2023 Sharygin Geometry Olympiad, 8.5

Tags: geometry
The median $CM$ and the altitude $AH$ of an acute-angled triangle $ABC$ meet at point $O$. A point $D$ lies outside the triangle in such a way that $AOCD$ is a parallelogram. Find the length of $BD$, if $MO= a$, $OC = b$.

2019 Saudi Arabia JBMO TST, 3

Tags: geometry
Let $ABC$ be an acute and scalene triangle. Points $D$ and $E$ are in the interior of the triangle so that $<$ $DAB$ $=$ $<$ $DCB$, $<$ $DAC$ $=$ $<$ $DBC$, $<$ $EAB$ $=$ $<$ $EBC$ and $<$ $EAC$ $=$ $<$ $ECB$. Prove that the triangle $ADE$ is a right triangle.

2019 IFYM, Sozopol, 8

We are given a $\Delta ABC$. Point $D$ on the circumscribed circle k is such that $CD$ is a symmedian in $\Delta ABC$. Let $X$ and $Y$ be on the rays $\overrightarrow{CB}$ and $\overrightarrow{CA}$, so that $CX=2CA$ and $CY=2CB$. Prove that the circle, tangent externally to $k$ and to the lines $CA$ and $CB$, is tangent to the circumscribed circle of $\Delta XDY$.

2005 Thailand Mathematical Olympiad, 1

Tags: circles , geometry
A point $A$ is chosen outside a circle with diameter $BC$ so that $\vartriangle ABC$ is acute. Segments $AB$ and $AC$ intersect the circle at $D$ and $E$, respectively, and $CD$ intersects $BE$ at $F$. Line $AF$ intersects the circle again at $G$ and intersects $BC$ at $H$. Prove that $AH \cdot F H = GH^2$. .

2013 Iran MO (3rd Round), 1

An $n$-stick is a connected figure consisting of $n$ matches of length $1$ which are placed horizontally or vertically and no two touch each other at points other than their ends. Two shapes that can be transformed into each other by moving, rotating or flipping are considered the same. An $n$-mino is a shape which is built by connecting $n$ squares of side length 1 on their sides such that there's a path on the squares between each two squares of the $n$-mino. Let $S_n$ be the number of $n$-sticks and $M_n$ the number of $n$-minos, e.g. $S_3=5$ And $M_3=2$. (a) Prove that for any natural $n$, $S_n \geq M_{n+1}$. (b) Prove that for large enough $n$ we have $(2.4)^n \leq S_n \leq (16)^n$. A [b]grid segment[/b] is a segment on the plane of length 1 which it's both ends are integer points. A polystick is called [b]wise[/b] if using it and it's rotations or flips we can cover all grid segments without overlapping, otherwise it's called [b]unwise[/b]. (c) Prove that there are at least $2^{n-6}$ different unwise $n$-sticks. (d) Prove that any polystick which is in form of a path only going up and right is wise. (e) Extra points: Prove that for large enough $n$ we have $3^n \leq S_n \leq 12^n$ Time allowed for this exam was 2 hours.

2007 Postal Coaching, 5

Let $P$ be an interior point of triangle $ABC$ such that $\angle BPC = \angle CPA =\angle APB = 120^o$. Prove that the Euler lines of triangles $APB,BPC,CPA$ are concurrent.

1999 Mongolian Mathematical Olympiad, Problem 3

At each vertex of a $4\times5$ rectangle there is a house. Find the path of the minimum length connecting all these houses.

2011 Saudi Arabia Pre-TST, 4.1

On a semicircle of diameter $AB$ and center $C$, consider vari­able points $M$ and $N$ such that $MC \perp NC$. The circumcircle of triangle $MNC$ intersects $AB$ for the second time at $P$. Prove that $\frac{|PM-PN|}{PC}$ constant and find its value.

1955 Miklós Schweitzer, 8

[b]8.[/b] Show that on any tetrahedron there can be found three acute bihedral angles such that the faces including these angles count among them all faces of tetrahedron. [b](G. 10)[/b]

2005 Taiwan TST Round 1, 1

More than three quarters of the circumference of a circle is colored black. Prove that there exists a rectangle such that all of its vertices are black. Actually the result holds if "three quarters" is replaced by "one half"...

2025 Israel National Olympiad (Gillis), P4

A $100\times \sqrt{3}$ rectangular table is given. What is the minimum number of disk-shaped napkins of radius $1$ required to cover the table completely? [i]Remark:[/i] The napkins are allowed to overlap and protrude the table's edges.