Found problems: 25757
1997 All-Russian Olympiad Regional Round, 8.3
On sides $AB$ and $BC$ of an equilateral triangle $ABC$ are taken points $D$ and $K$, and on the side $AC$ , points $E$ and $M$ so that $DA + AE = KC +CM = AB$. Prove that the angle between lines $DM$ and $KE$ is equal to $60^o$.
2021 Serbia Team Selection Test, P2
Let $D$ be an arbitrary point on the side $BC$ of triangle $ABC$. Points $E$ and $F$ are on $CA$ and $BA$ are such that $CD=CE$ and $BD=BF$. Lines $BE$ and $CF$ intersect at point $P$. Prove that when point $D$ varies along the line $BC$, $PD$ passes through a fixed point.
Revenge EL(S)MO 2024, 6
Fix a point $A$, a circle $\Omega$ centered at $O$, and reals $r$ and $\theta$. Let $X$ and $Y$ be variable points on $\Omega$ so that $\measuredangle XOY = \theta$. The tangents to $\Omega$ at $X$ and $Y$ meet at $T$, and a dilation at $T$ with scale factor $r$ sends $A$ to $A'$. Let $P$ be the foot from $A'$ to $TX$.
$ $ $ $ $ $ $ $ $ $ Suppose that some point $P^*$ is the same for two different $X$. Show that $\measuredangle TXY = \measuredangle AP^\ast O$. (All angles are directed.)
Proposed by [i]Karn Chutinan[/i]
1998 Hungary-Israel Binational, 2
On the sides of a convex hexagon $ ABCDEF$ , equilateral triangles are constructd in its exterior. Prove that the third vertices of these six triangles are vertices of a regular hexagon if and only if the initial hexagon is [i]affine regular[/i]. (A hexagon is called affine regular if it is centrally symmetric and any two opposite sides are parallel to the diagonal determine by the remaining two vertices.)
2008 District Round (Round II), 3
For $n>2$, an $n\times n$ grid of squares is coloured black and white like a chessboard, with its upper left corner coloured black. Then we can recolour some of the white squares black in the following way: choose a $2\times 3$ (or $3\times 2$) rectangle which has exactly $3$ white squares and then colour all these $3$ white squares black. Find all $n$ such that after a series of such operations all squares will be black.
2013 Purple Comet Problems, 11
In the following diagram two sides of a square are tangent to a circle with diameter $8$. One corner of the square lies on the circle. There are positive integers $m$ and $n$ so that the area of the square is $m +\sqrt{n}$. Find $m + n$.
[asy]
import graph;
size(4.4cm);
real labelscalefactor = 0.5;
pen dotstyle = black;
filldraw((-0.707106781,0.707106781)--(-0.707106781,-1)--(1,-1)--(1,0.707106781)--cycle,gray, linewidth(1.4));
draw(circle((0,0),1), linewidth(1.4));
[/asy]
2002 China Team Selection Test, 2
$ A_1$, $ B_1$ and $ C_1$ are the projections of the vertices $ A$, $ B$ and $ C$ of triangle $ ABC$ on the respective sides. If $ AB \equal{} c$, $ AC \equal{} b$, $ BC \equal{} a$ and $ AC_1 \equal{} 2t AB$, $ BA_1 \equal{} 2rBC$, $ CB_1 \equal{} 2 \mu AC$. Prove that:
\[ \frac {a^2}{b^2} \cdot \left( \frac {t}{1 \minus{} 2t} \right)^2 \plus{} \frac {b^2}{c^2} \cdot \left( \frac {r}{1 \minus{} 2r} \right)^2 \plus{} \frac {c^2}{a^2} \cdot \left( \frac {\mu}{1 \minus{} 2\mu} \right)^2 \plus{} 16tr \mu \geq 1
\]
1998 Tournament Of Towns, 3
In a triangle $ ABC$ the points $ A'$, $ B'$ and $ C'$ lie on the sides $ BC$, $ CA$ and $ AB$, respectively. It is known that $ \angle AC'B' \equal{} \angle B'A'C$, $ \angle CB'A' \equal{} \angle A'C'B$ and $ \angle BA'C' \equal{} \angle C'B'A$. Prove that $ A'$, $ B'$ and $ C'$ are the midpoints of the corresponding sides.
2007 AMC 12/AHSME, 22
Two particles move along the edges of equilateral triangle $ \triangle ABC$ in the direction
\[ A\rightarrow B\rightarrow C\rightarrow A
\]starting simultaneously and moving at the same speed. One starts at $ A$, and the other starts at the midpoint of $ \overline{BC}$. The midpoint of the line segment joining the two particles traces out a path that encloses a region $ R$. What is the ratio of the area of $ R$ to the area of $ \triangle ABC$?
$ \textbf{(A)}\ \frac {1}{16}\qquad \textbf{(B)}\ \frac {1}{12}\qquad \textbf{(C)}\ \frac {1}{9}\qquad \textbf{(D)}\ \frac {1}{6}\qquad \textbf{(E)}\ \frac {1}{4}$
1980 USAMO, 4
The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.
2011 Sharygin Geometry Olympiad, 12
Let $AP$ and $BQ$ be the altitudes of acute-angled triangle $ABC$. Using a compass and a ruler, construct a point $M$ on side $AB$ such that $\angle AQM = \angle BPM$.
2023 Princeton University Math Competition, 8
8. Let $\triangle A B C$ be a triangle with sidelengths $A B=5, B C=7$, and $C A=6$. Let $D, E, F$ be the feet of the altitudes from $A, B, C$, respectively. Let $L, M, N$ be the midpoints of sides $B C, C A, A B$, respectively. If the area of the convex hexagon with vertices at $D, E, F, L, M, N$ can be written as $\frac{x \sqrt{y}}{z}$ for positive integers $x, y, z$ with $\operatorname{gcd}(x, z)=1$ and $y$ square-free, find $x+y+z$.
2012 Pre - Vietnam Mathematical Olympiad, 3
Let $ABC$ be a triangle with height $AH$. $P$ lies on the circle over 3 midpoint of $AB,BC,CA$ ($P \notin BC$). Prove that the line connect 2 center of $(PBH)$ and $(PCH)$ go through a fixed point.
(where $(XYZ)$ be a circumscribed circle of triangle $XYZ$)
2022 USEMO, 4
Let $ABCD$ be a cyclic quadrilateral whose opposite sides are not parallel. Suppose points $P, Q, R, S$ lie in the interiors of segments $AB, BC, CD, DA,$ respectively, such that $$\angle PDA = \angle PCB, \text{ } \angle QAB = \angle QDC, \text{ } \angle RBC = \angle RAD, \text{ and } \angle SCD = \angle SBA.$$ Let $AQ$ intersect $BS$ at $X$, and $DQ$ intersect $CS$ at $Y$. Prove that lines $PR$ and $XY$ are either parallel or coincide.
[i]Tilek Askerbekov[/i]
2024 JBMO TST - Turkey, 1
In the acute-angled triangle $ABC$, $P$ is the midpoint of segment $BC$ and the point $K$ is the foot of the altitude from $A$. $D$ is a point on segment $AP$ such that $\angle BDC=90$. Let $(ADK) \cap BC=E$ and $(ABC) \cap AE=F$. Prove that $\angle AFD=90$.
2015 Belarus Team Selection Test, 2
In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.
1988 All Soviet Union Mathematical Olympiad, 479
In the acute-angled triangle $ABC$, the altitudes $BD$ and $CE$ are drawn. Let $F$ and $G$ be the points of the line $ED$ such that $BF$ and $CG$ are perpendicular to $ED$. Prove that $EF = DG$.
1987 Poland - Second Round, 6
We assign to any quadrilateral $ ABCD $ the centers of the circles circumscribed in the triangles $ BCD $, $ CDA $, $ DAB $, $ ABC $. Prove that if the vertices of a convex quadrilateral $ Q $ do not lie on the circle, then
a) the four points assigned to quadrilateral Q in the above manner are the vertices of the convex quadrilateral. Let us denote this quadrilateral by $ t(Q) $,
b) the vertices of the quadrilateral $ t(Q) $ do not lie on the circle,
c) quadrilaterals $ Q $ and $ t(t(Q) $ are similar.
Indonesia MO Shortlist - geometry, g3
Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.
2013 Bosnia Herzegovina Team Selection Test, 1
Triangle $ABC$ is right angled at $C$. Lines $AM$ and $BN$ are internal angle bisectors.
$AM$ and $BN$ intersect altitude $CH$ at points $P$ and $Q$ respectively.
Prove that the line which passes through the midpoints of segments $QN$ and $PM$ is parallel to $AB$.
2010 Danube Mathematical Olympiad, 2
Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.
2017 Greece JBMO TST, Source
[url=https://artofproblemsolving.com/community/c675547][b]Greece JBMO TST 2017[/b][/url]
[url=http://artofproblemsolving.com/community/c6h1663730p10567608][b]Problem 1[/b][/url]. Positive real numbers $a,b,c$ satisfy $a+b+c=1$. Prove that
$$(a+1)\sqrt{2a(1-a)} + (b+1)\sqrt{2b(1-b)} + (c+1)\sqrt{2c(1-c)} \geq 8(ab+bc+ca).$$
Also, find the values of $a,b,c$ for which the equality happens.
[url=http://artofproblemsolving.com/community/c6h1663731p10567619][b]Problem 2[/b][/url]. Let $ABC$ be an acute-angled triangle inscribed in a circle $\mathcal C (O, R)$ and $F$ a point on the side $AB$ such that $AF < AB/2$. The circle $c_1(F, FA)$ intersects the line $OA$ at the point $A'$ and the circle $\mathcal C$ at $K$. Prove that the quadrilateral $BKFA'$ is cyclic and its circumcircle contains point $O$.
[url=http://artofproblemsolving.com/community/c6h1663732p10567627][b]Problem 3[/b][/url]. Prove that for every positive integer $n$, the number $A_n = 7^{2n} -48n - 1$ is a multiple of $9$.
[url=http://artofproblemsolving.com/community/c6h1663734p10567640][b]Problem 4[/b][/url]. Let $ABC$ be an equilateral triangle of side length $a$, and consider $D$, $E$ and $F$ the midpoints of the sides $(AB), (BC)$, and $(CA)$, respectively. Let $H$ be the the symmetrical of $D$ with respect to the line $BC$. Color the points $A, B, C, D, E, F, H$ with one of the two colors, red and blue.
[list=1]
[*] How many equilateral triangles with all the vertices in the set $\{A, B, C, D, E, F, H\}$ are there?
[*] Prove that if points $B$ and $E$ are painted with the same color, then for any coloring of the remaining points there is an equilateral triangle with vertices in the set $\{A, B, C, D, E, F, H\}$ and having the same color.
[*] Does the conclusion of the second part remain valid if $B$ is blue and $E$ is red?
[/list]
2007 Princeton University Math Competition, 2
In how many distinguishable ways can $10$ distinct pool balls be formed into a pyramid ($6$ on the bottom, $3$ in the middle, one on top), assuming that all rotations of the pyramid are indistinguishable?
1954 AMC 12/AHSME, 43
The hypotenuse of a right triangle is $ 10$ inches and the radius of the inscribed circle is $ 1$ inch. The perimeter of the triangle in inches is:
$ \textbf{(A)}\ 15 \qquad
\textbf{(B)}\ 22 \qquad
\textbf{(C)}\ 24 \qquad
\textbf{(D)}\ 26 \qquad
\textbf{(E)}\ 30$
2014 Kazakhstan National Olympiad, 3
The triangle $ABC$ is inscribed in a circle $w_1$. Inscribed in a triangle circle touchs the sides $BC$ in a point $N$. $w_2$ — the circle inscribed in a segment $BAC$ circle of $w_1$, and passing through a point $N$. Let points $O$ and $J$ — the centers of circles $w_2$ and an extra inscribed circle (touching side $BC$) respectively. Prove, that lines $AO$ and $JN$ are parallel.