Found problems: 25757
2022 USEMO, 3
Point $P$ lies in the interior of a triangle $ABC$. Lines $AP$, $BP$, and $CP$ meet the opposite sides of triangle $ABC$ at $A$', $B'$, and $C'$ respectively. Let $P_A$ the midpoint of the segment joining the incenters of triangles $BPC'$ and $CPB'$, and define points $P_B$ and $P_C$ analogously. Show that if
\[ AB'+BC'+CA'=AC'+BA'+CB' \]
then points $P,P_A,P_B,$ and $P_C$ are concyclic.
[i]Nikolai Beluhov[/i]
1988 China National Olympiad, 2
Given two circles $C_1,C_2$ with common center, the radius of $C_2$ is twice the radius of $C_1$. Quadrilateral $A_1A_2A_3A_4$ is inscribed in $C_1$. The extension of $A_4A_1$ meets $C_2$ at $B_1$; the extension of $A_1A_2$ meets $C_2$ at $B_2$; the extension of $A_2A_3$ meets $C_2$ at $B_3$; the extension of $A_3A_4$ meets $C_2$ at $B_4$. Prove that $P(B_1B_2B_3B_4)\ge 2P(A_1A_2A_3A_4)$, and in what case the equality holds? ($P(X)$ denotes the perimeter of quadrilateral $X$)
2023 Yasinsky Geometry Olympiad, 1
In triangle $ABC$, let points $M$ and $N$ be the midpoints of sides $AB$ and $BC$ respectively. It is known that the perimeter of the triangle $MBN$ is $12$ cm, and the perimeter of the quadrilateral $AMNC$ is $20$ cm. Find the length of the segment $MN$.
2003 Tuymaada Olympiad, 2
In a quadrilateral $ABCD$ sides $AB$ and $CD$ are equal, $\angle A=150^\circ,$ $\angle B=44^\circ,$ $\angle C=72^\circ.$
Perpendicular bisector of the segment $AD$ meets the side $BC$ at point $P.$
Find $\angle APD.$
[i]Proposed by F. Bakharev[/i]
Kyiv City MO Seniors Round2 2010+ geometry, 2015.11.2
The line passing through the center of the equilateral triangle $ ABC $ intersects the lines $ AB $, $ BC $ and $ CA $ at the points $ {{C} _ {1}} $, $ {{A} _ {1}} $ and $ {{B} _ {1}} $, respectively. Let $ {{A} _ {2}} $ be a point that is symmetric $ {{A} _ {1}} $ with respect to the midpoint of $ BC $; the points $ {{B} _ {2}} $ and $ {{C} _ {2}} $ are defined similarly. Prove that the points $ {{A} _ {2}} $, $ {{B} _ {2}} $ and $ {{C} _ {2}} $ lie on the same line tangent to the inscribed circle of the triangle $ ABC $.
(Serdyuk Nazar)
2013 Dutch Mathematical Olympiad, 3
The sides $BC$ and $AD$ of a quadrilateral $ABCD$ are parallel and the diagonals intersect in $O$. For this quadrilateral $|CD| =|AO|$ and $|BC| = |OD|$ hold. Furthermore $CA$ is the angular bisector of angle $BCD$. Determine the size of angle $ABC$.
[asy]
unitsize(1 cm);
pair A, B, C, D, O;
D = (0,0);
B = 3*dir(180 + 72);
C = 3*dir(180 + 72 + 36);
A = extension(D, D + (1,0), C, C + dir(180 - 36));
O = extension(A, C, B, D);
draw(A--B--C--D--cycle);
draw(B--D);
draw(A--C);
dot("$A$", A, N);
dot("$B$", B, SW);
dot("$C$", C, SE);
dot("$D$", D, N);
dot("$O$", O, E);
[/asy]
Attention: the figure is not drawn to scale.
2008 Pre-Preparation Course Examination, 3
Prove that we can put $ \Omega(\frac1{\epsilon})$ points on surface of a sphere with radius 1 such that distance of each of these points and the plane passing through center and two of other points is at least $ \epsilon$.
2014 Romania National Olympiad, 3
Let $ P,Q $ be the midpoints of the diagonals $ BD, $ respectively, $ AC, $ of the quadrilateral $ ABCD, $ and points $ M,N,R,S $ on the segments $ BC,CD,PQ, $ respectively $ AC, $ except their extremities, such that
$$ \frac{BM}{MC}=\frac{DN}{NC}=\frac{PR}{RQ}=\frac{AS}{SC} . $$
Show that the center of mass of the triangle $ AMN $ is situated on the segment $ RS. $
2013 China Team Selection Test, 1
Let $p$ be a prime number and $a, k$ be positive integers such that $p^a<k<2p^a$. Prove that there exists a positive integer $n$ such that \[n<p^{2a}, C_n^k\equiv n\equiv k\pmod {p^a}.\]
2000 AMC 12/AHSME, 25
Eight congruent equilateral triangles, each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.)
[asy]import three;
import math;
size(180);
defaultpen(linewidth(.8pt));
currentprojection=orthographic(2,0.2,1);
triple A=(0,0,1);
triple B=(sqrt(2)/2,sqrt(2)/2,0);
triple C=(sqrt(2)/2,-sqrt(2)/2,0);
triple D=(-sqrt(2)/2,-sqrt(2)/2,0);
triple E=(-sqrt(2)/2,sqrt(2)/2,0);
triple F=(0,0,-1);
draw(A--B--E--cycle);
draw(A--C--D--cycle);
draw(F--C--B--cycle);
draw(F--D--E--cycle,dotted+linewidth(0.7));[/asy]$ \textbf{(A)}\ 210 \qquad \textbf{(B)}\ 560 \qquad \textbf{(C)}\ 840 \qquad \textbf{(D)}\ 1260 \qquad \textbf{(E)}\ 1680$
2007 Today's Calculation Of Integral, 214
Find the area of the region surrounded by the two curves $ y=\sqrt{x},\ \sqrt{x}+\sqrt{y}=1$ and the $ x$ axis.
2022 Bulgarian Spring Math Competition, Problem 12.2
Let $ABCDV$ be a regular quadrangular pyramid with $V$ as the apex. The plane $\lambda$ intersects the $VA$, $VB$, $VC$ and $VD$ at $M$, $N$, $P$, $Q$ respectively. Find $VQ : QD$, if $VM : MA = 2 : 1$, $VN : NB = 1 : 1$ and $VP : PC = 1 : 2$.
2022 VN Math Olympiad For High School Students, Problem 1
Let $ABC$ be a triangle with $\angle A,\angle B,\angle C <120^{\circ}$.
Prove that: there is exactly one point $T$ inside $\triangle ABC$ such that $\angle BTC=\angle CTA=\angle ATB=120^{\circ}$.
($T$ is called [i]Fermat-Torricelli[/i] point of $\triangle ABC$)
Kyiv City MO 1984-93 - geometry, 1992.8.3
Find the locus of the intersection points of the medians all triangles inscribed in a given circle.
Durer Math Competition CD Finals - geometry, 2017.C+1
Given a plane with two circles, one with points $A$ and $B$, and the other with points $C$ and $D$ are shown in the figure. The line $AB$ passes through the center of the first circle and touches the second circle while the line $CD$ passes through the center of the second circle and touches the first circle. Prove that the lines $AD$ and $BC$ are parallel.
[img]https://cdn.artofproblemsolving.com/attachments/e/e/92f7b57751e7828a6487a052d4869e27e658b2.png[/img]
Ukrainian TYM Qualifying - geometry, II.1
Inside a right cylinder with a radius of the base $R$ are placed $k$ ($k\ge 3$) of equal balls, each of which touches the side surface and the lower base of the cylinder and, in addition, exactly two other balls. After that, another equal ball is placed inside the cylinder so that it touches the upper base of the cylinder and all other balls. Find the volume $V (R, k)$ of the cylinder.
1962 IMO Shortlist, 5
On the circle $K$ there are given three distinct points $A,B,C$. Construct (using only a straightedge and a compass) a fourth point $D$ on $K$ such that a circle can be inscribed in the quadrilateral thus obtained.
Kyiv City MO 1984-93 - geometry, 1988.10.2
Given an arbitrary tetrahedron. Prove that its six edges can be divided into two triplets so that from each triple it was possible to form a triangle.
2013 Lusophon Mathematical Olympiad, 6
Consider a triangle $ABC$. Let $S$ be a circumference in the interior of the triangle that is tangent to the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. In the exterior of the triangle we draw three circumferences $S_A$, $S_B$, $S_C$. The circumference $S_A$ is tangent to $BC$ at $L$ and to the prolongation of the lines $AB$, $AC$ at the points $M$, $N$ respectively. The circumference $S_B$ is tangent to $AC$ at $E$ and to the prolongation of the line $BC$ at $P$. The circumference $S_C$ is tangent to $AB$ at $F$ and to the prolongation of the line $BC$ at $Q$. Show that the lines $EP$, $FQ$ and $AL$ meet at a point of the circumference $S$.
2011 Saudi Arabia IMO TST, 3
In acute triangle $ABC$, $\angle A = 20^o$. Prove that the triangle is isosceles if and only if $$\sqrt[3]{a^3 + b^3 + c^3 -3abc} = \min\{b, c\}$$, where $a,b, c$ are the side lengths of triangle $ABC$.
Novosibirsk Oral Geo Oly VIII, 2022.4
In triangle $ABC$, angle $C$ is three times the angle $A$, and side $AB$ is twice the side $BC$. What can be the angle $ABC$?
2014 Postal Coaching, 2
Suppose $ABCD$ is a convex quadrilateral.Points $P,Q,R$ and $S$ are four points on the line segments $AB,BC,CD$ and $DA$ respectively.The line segments $PR$ and $QS$ meet at $T$.Suppose that each of the quadrilaterals $APTS,BQTP,CRTQ$ and $DSTR$ have an incircle.Prove that the quadrilateral $ABCD$ also has an incircle.
2021 LMT Spring, B19
Kevin is at the point $(19,12)$. He wants to walk to a point on the ellipse $9x^2 + 25y^2 = 8100$, and then walk to $(-24, 0)$. Find the shortest length that he has to walk.
[i]Proposed by Kevin Zhao[/i]
1998 Tournament Of Towns, 2
$ABCD$ is a parallelogram. A point $M$ is found on the side $AB$ or its extension such that $\angle MAD = \angle AMO$ where $O$ is the intersection point of the diagonals of the parallelogram. Prove that $MD = MG$.
(M Smurov)
2020 Cono Sur Olympiad, 3
Let $ABC$ be an acute triangle such that $AC<BC$ and $\omega$ its circumcircle. $M$ is the midpoint of $BC$. Points $F$ and $E$ are chosen in $AB$ and $BC$, respectively, such that $AC=CF$ and $EB=EF$. The line $AM$ intersects $\omega$ in $D\neq A$. The line $DE$ intersects the line $FM$ in $G$. Prove that $G$ lies on $\omega$.