Found problems: 25757
2020 AMC 12/AHSME, 11
As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length $2$ so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region—inside the hexagon but outside all of the semicircles?
[asy]
size(140);
fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4));
fill(arc((2,0),1,180,0)--(2,0)--cycle,white);
fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white);
fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white);
fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white);
fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white);
fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white);
draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0));
draw(arc((2,0),1,180,0)--(2,0)--cycle);
draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle);
draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle);
draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle);
draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle);
draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle);
label("$2$",(3.5,3sqrt(3)/2),NE);
[/asy]
$\textbf{(A)}\ 6\sqrt3-3\pi \qquad\textbf{(B)}\ \frac{9\sqrt3}{2}-2\pi \qquad\textbf{(C)}\ \frac{3\sqrt3}{2}-\frac{\pi}{3} \qquad\textbf{(D)}\ 3\sqrt3-\pi \\ \qquad\textbf{(E)}\ \frac{9\sqrt3}{2}-\pi$
1992 IMTS, 5
Let $T = (a,b,c)$ be a triangle with sides $a,b$ and $c$ and area $\triangle$. Denote by $T' = (a',b',c')$ the triangle whose sides are the altitudes of $T$ (i.e., $a' = h_a, b' = h_b, c' = h_c$) and denote its area by $\triangle '$. Similarly, let $T'' = (a'',b'',c'')$ be the triangle formed from the altitudes of $T'$, and denote its area by $\triangle ''$. Given that $\triangle ' = 30$ and $\triangle '' = 20$, find $\triangle$.
2019 China National Olympiad, 4
Given an ellipse that is not a circle.
(1) Prove that the rhombus tangent to the ellipse at all four of its sides with minimum area is unique.
(2) Construct this rhombus using a compass and a straight edge.
2017 Moscow Mathematical Olympiad, 10
Point $D$ lies in $\triangle ABC$ and $BD=CD$,$\angle BDC=120$. Point $E$ lies outside $ABC$ and $AE=CE,\angle AEC=60$. Points $B$ and $E$ lies on different sides of $AC$. $F$ is midpoint $BE$. Prove, that $\angle AFD=90$
2014 Argentina Cono Sur TST, 3
All diagonals of a convex pentagon are drawn, dividing it in one smaller pentagon and $10$ triangles. Find the maximum number of triangles with the same area that may exist in the division.
2013 ELMO Shortlist, 4
Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$.
[i]Proposed by Evan Chen[/i]
2005 Gheorghe Vranceanu, 2
Let be a natural number $ n\ge 2 $ and a real number $ r>1. $ Determine the natural numbers $ k $ having the property that the affixes of $ r^ke^{\pi ki/n} ,r^{k+1}e^{\pi (k+1)i/n} ,r^{k+n}e^{\pi (k+n)i/n} ,r^{k+n+1}e^{\pi (k+n+1) i/n} $ in the complex plane represent the vertices of a trapezoid.
II Soros Olympiad 1995 - 96 (Russia), 10.5
Each of the lateral sides of the trapezoid, whose bases are equal to $ a$ and $b$, serves as a side of a regular triangle. One triangle is located entirely outside the trapezoid, and the other has common points with it. Find the distance between the centers of these triangles.
Today's calculation of integrals, 880
For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and
let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows.
(1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$.
(2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$
(3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.
1940 Putnam, B2
A cylindrical hole of radius $r$ is bored through a cylinder of radiues $R$ ($r\leq R$) so that the axes intersect at right angles.
i) Show that the area of the larger cylinder which is inside the smaller one can be expressed in the form
$$S=8r^2\int_{0}^{1} \frac{1-v^{2}}{\sqrt{(1-v^2)(1-m^2 v^2)}}\;dv,\;\; \text{where} \;\; m=\frac{r}{R}.$$
ii) If $K=\int_{0}^{1} \frac{1}{\sqrt{(1-v^2)(1-m^2 v^2)}}\;dv$ and $E=\int_{0}^{1} \sqrt{\frac{1-m^2 v^2}{1-v^2 }}dv$.
show that
$$S=8[R^2 E - (R^2 - r^2 )K].$$
2009 Germany Team Selection Test, 2
Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic.
[i]Proposed by John Cuya, Peru[/i]
2008 South africa National Olympiad, 2
Let $ABCD$ be a convex quadrilateral with the property that $AB$ extended and $CD$ extended intersect at a right angle. Prove that $AC\cdot BD>AD\cdot BC$.
2014 BMT Spring, 20
Suppose three circles of radius $5$ intersect at a common point. If the three (other) pairwise intersections between the circles form a triangle of area $ 8$, find the radius of the smallest possible circle containing all three circles.
2017 CMIMC Individual Finals, 3
The parabola $\mathcal P$ given by equation $y=x^2$ is rotated some acute angle $\theta$ clockwise about the origin such that it hits both the $x$ and $y$ axes at two distinct points. Suppose the length of the segment $\mathcal P$ cuts the $x$-axis is $1$. What is the length of the segment $\mathcal P$ cuts the $y$-axis?
2021 Taiwan TST Round 1, G
In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\]
(A disk is assumed to contain its boundary.)
2019 HMNT, 4
In $\vartriangle ABC$, $AB = 2019$, $BC = 2020$, and $CA = 2021$. Yannick draws three regular $n$-gons in the plane of $\vartriangle ABC$ so that each $n$-gon shares a side with a distinct side of $\vartriangle ABC$ and no two of the $n$-gons overlap. What is the maximum possible value of $n$?
2009 China Western Mathematical Olympiad, 2
Given an acute triangle $ABC$, $D$ is a point on $BC$. A circle with diameter $BD$ intersects line $AB,AD$ at $X,P$ respectively (different from $B,D$).The circle with diameter $CD$ intersects $AC,AD$ at $Y,Q$ respectively (different from $C,D$). Draw two lines through $A$ perpendicular to $PX,QY$, the feet are $M,N$ respectively.Prove that $\triangle AMN$ is similar to $\triangle ABC$ if and only if $AD$ passes through the circumcenter of $\triangle ABC$.
2019 Philippine TST, 2
In a triangle $ABC$ with circumcircle $\Gamma$, $M$ is the midpoint of $BC$ and point $D$ lies on segment $MC$. Point $G$ lies on ray $\overrightarrow{BC}$ past $C$ such that $\frac{BC}{DC} = \frac{BG}{GC}$, and let $N$ be the midpoint of $DG$. The points $P$, $S$, and $T$ are defined as follows:
[list = i]
[*] Line $CA$ meets the circumcircle $\Gamma_1$ of triangle $AGD$ again at point $P$.
[*] Line $PM$ meets $\Gamma_1$ again at $S$.
[*] Line $PN$ meets the line through $A$ that is parallel to $BC$ at $Q$. Line $CQ$ meets $\Gamma$ again at $T$.
[/list]
Prove that the points $P$, $S$, $T$, and $C$ are concyclic.
2003 China Girls Math Olympiad, 1
Let $ ABC$ be a triangle. Points $ D$ and $ E$ are on sides $ AB$ and $ AC,$ respectively, and point $ F$ is on line segment $ DE.$ Let $ \frac {AD}{AB} \equal{} x,$ $ \frac {AE}{AC} \equal{} y,$ $ \frac {DF}{DE} \equal{} z.$ Prove that
(1) $ S_{\triangle BDF} \equal{} (1 \minus{} x)y S_{\triangle ABC}$ and $ S_{\triangle CEF} \equal{} x(1 \minus{} y) (1 \minus{} z)S_{\triangle ABC};$
(2) $ \sqrt [3]{S_{\triangle BDF}} \plus{} \sqrt [3]{S_{\triangle CEF}} \leq \sqrt [3]{S_{\triangle ABC}}.$
1999 Chile National Olympiad, 2
In an acute triangle $ABC$, let $ \overline {AK}, \overline {BL}, \overline {CM} $ be the altitudes of the triangle concurrent at the point $ H $ and let $ P $ the midpoint of $ \overline {AH} $. Let's define $ S = \overline {BH} \cap \overline {MK} $ and $ T = \overline {LP} \cap \overline {AB} $. Show that $ \overline {TS} \perp \overline {BC} $
1997 Nordic, 2
Let $ABCD$ be a convex quadrilateral. We assume that there exists a point $P$ inside the quadrilateral such that
the areas of the triangles $ABP, BCP, CDP$, and $DAP$ are equal. Show that at least one of the diagonals of the
quadrilateral bisects the other diagonal.
2024 Euler Olympiad, Round 1, 9
Ants, named Anna and Bob, are located at vertices \(A\) and \(B\) respectively of a cube \(ABCD A_1 B_1 C_1 D_1\), with a sugar cube placed at vertex \(C_1\). It is known that Bob can move at a speed of $20$ meters per minute. Determine the minimum speed in integer meters per minute that Anna must be able to travel in order to reach the sugar cube at \(C_1\) before Bob.
[i]Proposed by Tamar Turashvili, Georgia [/i]
2024 PErA, P2
Let $ABCD$ be a fixed convex quadrilateral. Say a point $K$ is [i]pastanaga[/i] if there's a rectangle $PQRS$ centered at $K$ such that $A\in PQ, B\in QR, C\in RS, D\in SP$. Prove there exists a circle $\omega$ depending only on $ABCD$ that contains all pastanaga points.
2004 Germany Team Selection Test, 1
Let $a_{ij}$ $i=1,2,3$; $j=1,2,3$ be real numbers such that $a_{ij}$ is positive for $i=j$ and negative for $i\neq j$.
Prove the existence of positive real numbers $c_{1}$, $c_{2}$, $c_{3}$ such that the numbers \[a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},\qquad a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},\qquad a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}\] are either all negative, all positive, or all zero.
[i]Proposed by Kiran Kedlaya, USA[/i]
2001 German National Olympiad, 2
Determine the maximum possible number of points you can place in a rectangle with lengths $14$ and $28$ such that any two of those points are more than $10$ apart from each other.