Found problems: 25757
Kyiv City MO Juniors Round2 2010+ geometry, 2019.8.4
In the triangle $ABC$ it is known that$\angle A = 75^o, \angle C = 45^o$. On the ray $BC$ beyond the point $C$ the point $T$ is taken so that $BC = CT$. Let $M$ be the midpoint of the segment $AT$. Find the measure of the $\angle BMC$.
(Anton Trygub)
2017 AMC 10, 21
In $\triangle ABC,$ $AB=6, AC=8, BC=10,$ and $D$ is the midpoint of $\overline{BC}.$ What is the sum of the radii of the circles inscribed in $\triangle ADB$ and $\triangle ADC?$
$\textbf{(A)} \sqrt{5} \qquad \textbf{(B)} \frac{11}{4}\qquad \textbf{(C)} 2\sqrt{2} \qquad \textbf{(D)} \frac{17}{6} \qquad \textbf{(E)} 3$
2013 USA Team Selection Test, 3
In a table with $n$ rows and $2n$ columns where $n$ is a fixed positive integer, we write either zero or one into each cell so that each row has $n$ zeros and $n$ ones. For $1 \le k \le n$ and $1 \le i \le n$, we define $a_{k,i}$ so that the $i^{\text{th}}$ zero in the $k^{\text{th}}$ row is the $a_{k,i}^{\text{th}}$ column. Let $\mathcal F$ be the set of such tables with $a_{1,i} \ge a_{2,i} \ge \dots \ge a_{n,i}$ for every $i$ with $1 \le i \le n$. We associate another $n \times 2n$ table $f(C)$ from $C \in \mathcal F$ as follows: for the $k^{\text{th}}$ row of $f(C)$, we write $n$ ones in the columns $a_{n,k}-k+1, a_{n-1,k}-k+2, \dots, a_{1,k}-k+n$ (and we write zeros in the other cells in the row).
(a) Show that $f(C) \in \mathcal F$.
(b) Show that $f(f(f(f(f(f(C)))))) = C$ for any $C \in \mathcal F$.
2016 Korea Winter Program Practice Test, 3
There are three circles $w_1, w_2, w_3$. Let $w_{i+1} \cap w_{i+2} = A_i, B_i$, where $A_i$ lies insides of $w_i$. Let $\gamma$ be the circle that is inside $w_1,w_2,w_3$ and tangent to the three said circles at $T_1, T_2, T_3$. Let $T_iA_{i+1}T_{i+2}$'s circumcircle and $T_iA_{i+2}T_{i+1}$'s circumcircle meet at $S_i$. Prove that the circumcircles of $A_iB_iS_i$ meet at two points. ($1 \le i \le 3$, indices taken modulo $3$)
If one of $A_i,B_i,S_i$ are collinear - the intersections of the other two circles lie on this line. Prove this as well.
2013 Bosnia And Herzegovina - Regional Olympiad, 2
In circle with radius $10$, point $M$ is on chord $PQ$ such that $PM=5$ and $MQ=10$. Through point $M$ we draw chords $AB$ and $CD$, and points $X$ and $Y$ are intersection points of chords $AD$ and $BC$ with chord $PQ$ (see picture), respectively. If $XM=3$ find $MY$
[img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYy9kLzBiMmFmM2ViOGVmOTlmZDA5NGY2ZWY4MjM1YWI0ZDZjNjJlNzA1LnBuZw==&rn=Z2VvbWV0cmlqYS5wbmc=[/img]
2001 Moldova National Olympiad, Problem 7
The incircle of a triangle $ABC$ is centered at $I$ and touches $AC,AB$ and $BC$ at points $K,L,M$, respectively. The median $BB_1$ of $\triangle ABC$ intersects $MN$ at $D$. Prove that the points $I,D,K$ are collinear.
1978 IMO Longlists, 46
We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.
2019 BMT Spring, 6
Let $ \triangle ABE $ be a triangle with $ \frac{AB}{3} = \frac{BE}{4} = \frac{EA}{5} $. Let $ D \neq A $ be on line $ \overline{AE} $ such that $ AE = ED $ and $ D $ is closer to $ E $ than to $ A $. Moreover, let $ C $ be a point such that $ BCDE $ is a parallelogram. Furthermore, let $ M $ be on line $ \overline{CD} $ such that $ \overline{AM} $ bisects $ \angle BAE $, and let $ P $ be the intersection of $ \overline{AM} $ and $ \overline{BE} $. Compute the ratio of $ PM $ to the perimeter of $ \triangle ABE $.
1996 Vietnam Team Selection Test, 1
Given 3 non-collinear points $A,B,C$. For each point $M$ in the plane ($ABC$) let $M_1$ be the point symmetric to $M$ with respect to $AB$, $M_2$ be the point symmetric to $M_1$ with respect to $BC$ and $M'$ be the point symmetric to $M_2$ with respect to $AC$. Find all points $M$ such that $MM'$ obtains its minimum. Let this minimum value be $d$. Prove that $d$ does not depend on the order of the axes of symmetry we chose (we have 3 available axes, that is $BC$, $CA$, $AB$. In the first part the order of axes we chose $AB$, $BC$, $CA$, and the second part of the problem states that the value $d$ doesn't depend on this order).
2013 F = Ma, 2
Jordi stands 20 m from a wall and Diego stands 10 m from the same wall. Jordi throws a ball at an angle of 30 above the horizontal, and it collides elastically with the wall. How fast does Jordi need to throw the ball so that Diego will catch it? Consider Jordi and Diego to be the same height, and both are on the same perpendicular line from the wall.
$\textbf{(A) } 11 \text{ m/s}\\
\textbf{(B) } 15 \text{ m/s}\\
\textbf{(C) } 19 \text{ m/s}\\
\textbf{(D) } 30 \text{ m/s}\\
\textbf{(E) } 35 \text{ m/s}$
2018 Sharygin Geometry Olympiad, 13
Let $ABCD$ be a cyclic quadrilateral, and $M$, $N$ be the midpoints of arcs $AB$ and $CD$ respectively. Prove that $MN$ bisects the segment between the incenters of triangles $ABC$ and $ADC$.
2010 IMAR Test, 3
Given an integer $n\ge 2$, given $n+1$ distinct points $X_0,X_1,\ldots,X_n$ in the plane, and a positive real number $A$, show that the number of triangles $X_0X_iX_j$ of area $A$ does not exceed $4n\sqrt n$.
1960 Czech and Slovak Olympiad III A, 3
Two different points $A, M$ are given in a plane, $AM = d > 0$. Let a number $v > 0$ be given. Construct a rhombus $ABCD$ with the height of length $v$ and $M$ being a midpoint of $BC$. Discuss conditions of solvability and determine number of solutions. Can the resulting quadrilateral $ABCD$ be a square?
2023 Balkan MO Shortlist, G4
Let $O$ and $H$ be the circumcenter and orthocenter of a scalene triangle $ABC$, respectively. Let $D$ be the intersection point of the lines $AH$ and $BC$. Suppose the line $OH$ meets the side $BC$ at $X$. Let $P$ and $Q$ be the second intersection points of the circumcircles of $\triangle BDH$ and $\triangle CDH$ with the circumcircle of $\triangle ABC$, respectively. Show that the four points $P, D, Q$ and $X$ lie on a circle.
2010 Dutch IMO TST, 4
Let $ABCD$ be a cyclic quadrilateral satisfying $\angle ABD = \angle DBC$. Let $E$ be the intersection of the diagonals $AC$ and $BD$. Let $M$ be the midpoint of $AE$, and $N$ be the midpoint of $DC$. Show that $MBCN$ is a cyclic quadrilateral.
2022 Durer Math Competition (First Round), 4
Let $ABC$ be an acute triangle, and let $F_A$ and $F_B$ be the midpoints of sides $BC$ and $CA$, respectively. Let $E$ and $F$ be the intersection points of the circle centered at $F_A$ and passing through $A$ and the circle centered at $F_B$ and passing through $B$. Prove that if segments $CE$ and $CF$ have midpoints $N$ and $M$, respectively, then the intersection points of the circle centered at $M$ and passing through $E$ and the circle centered at $N$ and passing through $F$ lie on the line $AB$.
2012 AIME Problems, 6
Let $z = a + bi$ be the complex number with $|z| = 5$ and $b > 0$ such that the distance between $(1 + 2i)z^3$ and $z^5$ is maximized, and let $z^4 = c + di$.
Find $c+d$.
1983 Poland - Second Round, 5
The bisectors of the angles $ CAB, ABC, BCA $ of the triangle $ ABC $ intersect the circle circumcribed around this triangle at points $ K, L, M $, respectively. Prove that $$ AK+BL+CM > AB+BC+CA.$$
2017 Romanian Masters In Mathematics, 6
Let $ABCD$ be any convex quadrilateral and let $P, Q, R, S$ be points on the segments $AB, BC, CD$, and $DA$, respectively. It is given that the segments $PR$ and $QS$ dissect $ABCD$ into four quadrilaterals, each of which has perpendicular diagonals. Show that the points $P, Q, R, S$ are concyclic.
2011 Bangladesh Mathematical Olympiad, HS
[size=130][b]Higher Secondary: 2011[/b]
[/size]
Time: 4 Hours
[b]Problem 1:[/b]
Prove that for any non-negative integer $n$ the numbers $1, 2, 3, ..., 4n$ can be divided in tow mutually exclusive classes with equal number of members so that the sum of numbers of each class is equal.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=709
[b]Problem 2:[/b]
In the first round of a chess tournament, each player plays against every other player exactly once. A player gets $3, 1$ or $-1$ points respectively for winning, drawing or losing a match. After the end of the first round, it is found that the sum of the scores of all the players is $90$. How many players were there in the tournament?
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=708
[b]Problem 3:[/b]
$E$ is the midpoint of side $BC$ of rectangle $ABCD$. $A$ point $X$ is chosen on $BE$. $DX$ meets extended $AB$ at $P$. Find the position of $X$ so that the sum of the areas of $\triangle BPX$ and $\triangle DXC$ is maximum with proof.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=683
[b]Problem 4:[/b]
Which one is larger 2011! or, $(1006)^{2011}$? Justify your answer.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=707
[b]Problem 5:[/b]
In a scalene triangle $ABC$ with $\angle A = 90^{\circ}$, the tangent line at $A$ to its circumcircle meets line $BC$ at $M$ and the incircle touches $AC$ at $S$ and $AB$ at $R$. The lines $RS$ and $BC$ intersect at $N$ while the lines $AM$ and $SR$ intersect at $U$. Prove that the triangle $UMN$ is isosceles.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=706
[b]Problem 6:[/b]
$p$ is a prime and sum of the numbers from $1$ to $p$ is divisible by all primes less or equal to $p$. Find the value of $p$ with proof.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=693
[b]Problem 7:[/b]
Consider a group of $n > 1$ people. Any two people of this group are related by mutual friendship or mutual enmity. Any friend of a friend and any enemy of an enemy is a friend. If $A$ and $B$ are friends/enemies then we count it as $1$ [b]friendship/enmity[/b]. It is observed that the number of friendships and number of enmities are equal in the group. Find all possible values of $n$.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=694
[b]Problem 8:[/b]
$ABC$ is a right angled triangle with $\angle A = 90^{\circ}$ and $D$ be the midpoint of $BC$. A point $F$ is chosen on $AB$. $CA$ and $DF$ meet at $G$ and $GB \parallel AD$. $CF$ and $AD$ meet at $O$ and $AF = FO$. $GO$ meets $BC$ at $R$. Find the sides of $ABC$ if the area of $GDR$ is $\dfrac{2}{\sqrt{15}}$
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=704
[b]Problem 9:[/b]
The repeat of a natural number is obtained by writing it twice in a row (for example, the repeat of $123$ is $123123$). Find a positive integer (if any) whose repeat is a perfect square.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=703
[b]Problem 10:[/b]
Consider a square grid with $n$ rows and $n$ columns, where $n$ is odd (similar to a chessboard). Among the $n^2$ squares of the grid, $p$ are black and the others are white. The number of black squares is maximized while their arrangement is such that horizontally, vertically or diagonally neighboring black squares are separated by at least one white square between them. Show that there are infinitely many triplets of integers $(p, q, n)$ so that the number of white squares is $q^2$.
http://matholympiad.org.bd/forum/viewtopic.php?f=13&t=702
The problems of the Junior categories are available in [url=http://matholympiad.org.bd/forum/]BdMO Online forum[/url]:
http://matholympiad.org.bd/forum/viewtopic.php?f=25&t=678
2017 QEDMO 15th, 8
Let $ABC$ be a triangle of area $1$ with medians $s_a, s_b,s_c$. Show that there is a triangle whose sides are the same length as $s_a, s_b$, and $s_c$, and determine its area.
2012 Iran Team Selection Test, 3
The pentagon $ABCDE$ is inscirbed in a circle $w$. Suppose that $w_a,w_b,w_c,w_d,w_e$ are reflections of $w$ with respect to sides $AB,BC,CD,DE,EA$ respectively. Let $A'$ be the second intersection point of $w_a,w_e$ and define $B',C',D',E'$ similarly. Prove that
\[2\le \frac{S_{A'B'C'D'E'}}{S_{ABCDE}}\le 3,\]
where $S_X$ denotes the surface of figure $X$.
[i]Proposed by Morteza Saghafian, Ali khezeli[/i]
2014 USA Team Selection Test, 2
Let $ABCD$ be a cyclic quadrilateral, and let $E$, $F$, $G$, and $H$ be the midpoints of $AB$, $BC$, $CD$, and $DA$ respectively. Let $W$, $X$, $Y$ and $Z$ be the orthocenters of triangles $AHE$, $BEF$, $CFG$ and $DGH$, respectively. Prove that the quadrilaterals $ABCD$ and $WXYZ$ have the same area.
2017 Sharygin Geometry Olympiad, 1
Let $ABC$ be a regular triangle. The line passing through the midpoint of $AB$ and parallel to $AC$ meets the minor arc $AB$ of the circumcircle at point $K$. Prove that the ratio $AK:BK$ is equal to the ratio of the side and the diagonal of a regular pentagon.
1988 China Team Selection Test, 3
A polygon $\prod$ is given in the $OXY$ plane and its area exceeds $n.$ Prove that there exist $n+1$ points $P_{1}(x_1, y_1), P_{2}(x_2, y_2), \ldots, P_{n+1}(x_{n+1}, y_{n+1})$ in $\prod$ such that $\forall i,j \in \{1, 2, \ldots, n+1\}$, $x_j - x_i$ and $y_j - y_i$ are all integers.